Теория оптимального управления

 

6.2.1. Постановка и классификация задач теории оп­тимального управления. В подавляющем большинстве рас­смотренных нами задач факторы, связанные с изменением изу­чаемых объектов и систем в течение времени, выносились за скобки. Возможно, при выполнении определенных предпосы­лок такой подход является конструктивным и правомерным. Однако очевидно и то, что это допустимо далеко не всегда. Су­ществует обширный класс задач, в которых необходимо найти оптимальные действия объекта, учитывающие динамику его состояний во времени и пространстве. Методы их решения со­ставляют предмет математической теории оптимального управ­ления.

В весьма общем виде задача оптимального управления мо­жет быть сформулирована следующим образом:

 

Имеется некоторый объект, состояние которого харак­теризуется двумя видами параметров — параметрами состояния и параметрами управления, причем в зависи­мости от выбора последних процесс управления объек­том протекает тем или иным образом. Качество про­цесса управления оценивается с помощью некоторого функционала*, на основе чего ставится задача: найти такую последовательность значений управляющих па­раметров, для которой данный функционал принимает экстремальное значение.

* Функционалом называется числовая функция, аргументами кото­рой, как правило, служат другие функции.

 

С формальной точки зрения многие проблемы оптимального управления могут быть сведены к задачам линейного или нели­нейного программирования большой размерности, так как каж­дой точке пространства состояний соответствует свой вектор неизвестных переменных. Все же, как правило, движение в дан­ном направлении без учета специфики соответствующих задач не приводит к рациональным и эффективным алгоритмам их ре­шения. Поэтому методы решения задач оптимального управле­ния традиционно связаны с другим математическим аппаратом, берущим свое начало от вариационного исчисления и теории интегральных уравнений. Следует также заметить, что опять-таки в силу исторических причин теория оптимального управ­ления была ориентирована на физические и технические при­ложения, и ее применение для решения экономических задач носит в определенном смысле вторичный характер. В то же вре­мя в целом ряде случаев модели исследования, применяющие аппарат теории оптимального управления, могут привести к содержательным и интересным результатам.

К сказанному выше необходимо добавить замечание о тес­ной связи, существующей между методами, применяемыми для решения задач оптимального управления, и динамическим про­граммированием. В одних случаях они могут использоваться на альтернативной основе, а в других довольно удачно дополнять друг друга.

Существуют различные подходы к классификации задач оп­тимального управления. Прежде всего, их можно классифици­ровать в зависимости от объекта управления:

 

Ø Ø задачи управления с сосредоточенными параметрами;

 

Ø Ø задачи управления объектами с распределенными парамет­рами.

 

Примером первых является управление самолетом как еди­ным целым, а вторых — управление непрерывным технологи­ческим процессом.

В зависимости от типа исходов, к которым приводят приме­няемые управления, выделяют детерминированные и стоха­стические задачи. В последнем случае результатом управле­ния является множество исходов, описываемых вероятностями их наступления.

По характеру изменения управляемой системы во времени различают задачи:

 

Ø Ø с дискретно изменяющимся временем;

 

Ø Ø с непрерывно изменяющимся временем.

 

Аналогично классифицируются задачи управления объекта­ми с дискретным или непрерывным множеством возможных состояний. Задачи управления системами, в которых время и со­стояния меняются дискретно, получили название задач управле­ния конечными автоматами. Наконец, при определенных ус­ловиях могут ставиться задачи управления смешанными системами.

Многие модели управляемых систем основаны на аппарате дифференциальных уравнений как в обыкновенных, так и в час­тных производных. При исследовании систем с распределенны­ми параметрами, в зависимости от вида используемых диффе­ренциальных уравнений в частных производных, выделяют такие типы задач оптимального управления, как параболиче­ские, эллиптические или гиперболические.

Рассмотрим два простейших примера задач управления эко­номическими объектами.

Задача распределения ресурсов. Имеется т складов с номерами i (i ∊1: m), предназначенных для хранения однородно­го продукта. В дискретные моменты времени t ∊0:(T -l) проис­ходит его распределение между объектами-потребителями (клиентами) с номерами j, j ∊1: n. Пополнение запаса в пунктах хранения продукта в t -й момент времени определяется величи­нами ait, i ∊1: m, а потребности клиентов в нем равняются bjt, j ∊1: n. Обозначим через cti,j — затраты на доставку единицы продукта из i -го склада j -му потребителю в момент времени t. Также предполагается, что продукт, поступивший на склад в момент t, может быть использован, начиная со следующего мо­мента (t +l). Для сформулированной модели ставится задача найти такой план распределения ресурсов { хti,j } Tm x n , который минимизирует суммарные расходы на доставку потребителям продукции со складов в течение полного периода функциониро­вания системы.

Обозначив через хti,j количество продукта, поставляемое j -му клиенту с i -го склада в t -й момент времени, а через zti — общее количество продукта на i -м складе, описанную выше про­блему можно представить как задачу нахождения таких сово­купностей переменных

 

 

которые обращают в минимум функцию

 

 

при условиях

 

 

где объемы начальных запасов продукта на складах z 0 i = ži. пред­полагаются заданными.

Задачу (6.20)-(6.23) называют динамической транспорт­ной задачей линейного программирования. С точки зрения приведенный выше терминологии независимые переменные хti,j представляют собой параметры управления системой, а зави­сящие от них переменные zti — совокупность параметров состояния системы в каждый момент времени t. Ограничения zti ≥ 0 гарантируют, что в любой момент времени с любого скла­да не может быть вывезен объем продукта, превышающий его фактическое количество, а ограничения (6.21) задают правила изменения этого количества при переходе от одного периода к другому. Ограничения данного вида, которые задают условия на значения параметров состояния системы, принято называть фазовыми.

Отметим также, что условие (6.21) служит простейшим при­мером фазовых ограничений, поскольку связываются значения параметров состояния для двух смежных периодов t и t +l. В общем случае может устанавливаться зависимость для груп­пы параметров, принадлежащих нескольким, возможно не­смежным, этапам. Такая потребность может возникнуть, на­пример, при учете в моделях фактора запаздывания поставок.

Простейшая динамическая модель макроэкономики. Представим экономику некоторого региона как совокупность п отраслей (j ∊1: п), валовой продукт которых в денежном вы­ражении на некоторый момент t может быть представлен в виде вектора zt =(zt 1 , zt 2 ,..., ztn), где t ∊0:(Т -1). Обозначим через At матрицу прямых затрат, элементы которой ati,j, отражают затра­ты продукции i -й отрасли (в денежном выражении) на изготов­ление единицы продукции j -й отрасли в t -й момент времени. Если Xt = ║ xti,jn x m — матрица, задающая удельные нормы продукции i -й отрасли, идущей на расширение производства в j -й отрасли, а уt = (уt 1, уt 2 ,..., уtn) — вектор объемов продукции от­раслей потребления, идущей на потребление, то условие рас­ширенного воспроизводства можно записать как

 

 

где z 0 = ž — исходный запас продукции отраслей предполагает­ся заданным и

 

 

В рассматриваемой модели величины zt являются парамет­рами состояния системы, а Xt — управляющими параметрами. На ее базе могут быть поставлены различные задачи, типичным представителем которых является задача оптимального вывода экономики на момент Т к некоторому заданному состоянию z *. Данная задача сводится к отысканию последовательности управляющих параметров

 

 

удовлетворяющих условиям (6.24)-(6.25) и минимизирующих функцию

 

 

6.2.2. Простейшая задача оптимального управления. Один из приемов, применяемых для решения экстремальных задач, состоит в выделении некоторой проблемы, допускающей относительно несложное решение, к которой в дальнейшем могут быть сведены остальные задачи.

Рассмотрим так называемую простейшую задачу управле­ния. Она имеет вид

 

 

Специфика условий задачи (6.27)-(6.29) состоит в том, что функции качества управления (6.27) и ограничения (6.28) яв­ляются линейными относительно zt, в то же время функция g (t, хt), входящая в (6.28), может быть произвольной. Послед­нее свойство делает задачу нелинейной даже при t =1, т. е. в статическом варианте.

Общая идея решения задачи (6.27)-(6.29) сводится к ее «расщеплению» на подзадачи для каждого отдельно взятого момента времени, в предположении, что они успешно разреши­мы. Построим для задачи (6.27)-(6.29) функцию Лагранжа

 

 

где λ t — вектора множителей Лагранжа (t ∊0: Т). Ограничения (6.29), носящие общий характер, в функцию (6.30) в данном случае не включены. Запишем ее в несколько иной форме

 

 

Необходимые условия экстремума функции Ф (х, z, λ) по со­вокупности векторов zt задаются системой уравнений

 

 

которая называется системой для сопряженных перемен­ных. Как можно заметить, процесс нахождения параметров λ t в системе (6.32) осуществляется рекуррентным образом в об­ратном порядке.

Необходимые условия экстремума функции Лагранжа по переменным λ t будут эквивалентны ограничениям (6.28), и, наконец, условия ее экстремума по совокупности векторов хtХt, t ∊1:(Т -1) должны быть найдены как результат реше­ния задачи

 

 

Таким образом, задача поиска оптимального управления сво­дится к поиску управлений, подозрительных на оптимальность, т. е. таких, для которых выполняется необходимое условие оп­тимальности. Это, свою очередь, сводится к нахождению таких t, t, t, удовлетворяющих системе условий (6.28), (6.32), (6.33), которая называется дискретным принципом максиму­ма Понтрягина.

Справедлива теорема.

 

Теорема 6.2. Совокупность векторов t, t, t, удов­летворяющих системе (6.28), (6.32), (6.33), образует седловую точку функции Ф(х, z, λ) (6.30), т. е. при лю­бых допустимых х, z, λ выполняются неравенства

 

 

Доказательство.

Пусть t, t, t, удовлетворяют системе (6.28), (6.32), (6.33). Тогда из (6.31) и (6.32) следует, что

 

 

и поскольку t удовлетворяет (6.33), то

 

 

С другой стороны, в силу (6.28) из (6.30) следует, что при любом векторе t

 

 

Следовательно,

 

 

Применяя теорему (6.2), а также положения теории нели­нейного программирования, касающиеся связи между решени­ем экстремальной задачи и существованием седловой точки (см. п. 2.2.2), приходим к выводу о том, что векторы t, t явля­ются решением простейшей задачи оптимального управления (6.27)-(6.29).

В результате мы получили логически простую схему реше­ния данной задачи: из соотношений (6.32) определяются сопря­женные переменные t, затем в ходе решения задачи (6.33) на­ходятся управления t и далее из (6.28) — оптимальная траектория состояний t,.

Предложенный метод относится к фундаментальным резуль­татам теории оптимального управления и, как уже это упомина­лось выше, имеет важное значение для решения многих более сложных задач, которые, так или иначе, сводятся к простей­шей. В то же время очевидны и пределы его эффективного ис­пользования, которые целиком зависят от возможности реше­ния задачи (6.33).

КЛЮЧЕВЫЕ ПОНЯТИЯ

 

Ø Ø Игра, игрок, стратегия.

Ø Ø Игры с нулевой суммой.

Ø Ø Матричные игры.

Ø Ø Антагонистические игры.

Ø Ø Принципы максимина и минимакcа.

Ø Ø Седловая точка игры.

Ø Ø Цена игры.

Ø Ø Смешанная стратегия.

Ø Ø Основная теорема матричных игр.

Ø Ø Динамическая транспортная задача.

Ø Ø Простейшая динамическая модель макроэкономики.

Ø Ø Простейшая задача оптимального управления.

Ø Ø Дискретный принцип максимума Понтрягина.

КОНТРОЛЬНЫЕ ВОПРОСЫ

6.1. Кратко сформулируйте предмет теории игр как научной дисциплины.

6.2. Какой смысл вкладывается в понятие «игра»?

6.3. Для описания каких экономических ситуаций может быть применен аппарат теории игр?

6.4. Какая игра называется антагонистической?

6.5. Чем однозначно определяются матричные игры?

6.6. В чем заключаются принципы максимина и минимакcа?

6.7. При каких условиях можно говорить о том, что игра име­ет седловую точку?

6.8. Приведите примеры игр, которые имеют седловую точку и в которых она отсутствует.

6.9. Какие подходы существуют к определению оптимальных стратегий?

6.10. Что называют «ценой игры»?

6.11. Дайте определение понятию «смешанная стратегия».

СПИСОК ЛИТЕРАТУРЫ

 

1. Абрамов Л. М., Капустин В. Ф. Математическое про­граммирование. Л.,1981.

2. Ашманов С. А. Линейное программирование: Учеб. посо­бие. М., 1981.

3. Ашманов С. А., Тихонов А. В. Теория оптимизации в зада­чах и упражнениях. М., 1991.

4. Беллман Р. Динамическое программирование. М., 1960.

5. Беллман Р., Дрейфус С. Прикладные задачи динамичес­кого программирования. М., 1965.

6. Гавурин М. К., Малоземов В. Н. Экстремальные задачи с линейными ограничениями. Л., 1984.

7. Гасс С. Линейное программирование (методы и приложе­ния). М., 1961.

8. Гейл Д. Теория линейных экономических моделей М., 1963.

9. Гилл Ф., Мюррей У., Райт М. Практическая оптимиза­ция / Пер. с англ. М., 1985.

10. Давыдов Э. Г. Исследование операций: Учеб. пособие для студентов вузов. М., 1990.

11. Данциг Дж. Линейное программирование, его обобще­ния и применения. М.,1966.

12. Еремин И. И., Астафьев Н. Н. Введение в теорию линей­ного и выпуклого программирования. М., 1976.

13. Ермольев Ю.М., Ляшко И.И., Михалевич В.С., Тюптя В.И. Математические методы исследования операций: Учеб. пособие для вузов. Киев, 1979.

14. Зайченко Ю. П. Исследование операций, 2-е изд. Киев, 1979.

15. Зангвилл У. И. Нелинейное программирование. Единый подход. М., 1973.

16. Зойтендейк Г. Методы возможных направлений. М., 1963.

17. Карлин С. Математические методы в теории игр, про­граммировании и экономике. М., 1964.

18. Карманов В. Г. Математическое программирование: Учеб. пособие. М., 1986.

19. Корбут А.А., Финкелыитейн Ю. Ю. Дискретное про­граммирование. М., 1968.

20. Кофман А., Анри-Лабордер А. Методы и модели иссле­дования операций. М., 1977.

21. Кюнце Г.П., Крелле В. Нелинейное программирование. М.,1965.

22. Ляшенко И.Н., Карагодова Е.А., Черникова Н.В., Шор Н.3. Линейное и нелинейное программирование. Киев, 1975.

23. Мак-Кинси Дж. Введение в теорию игр. М., 1960.

24. Мухачева Э. А., Рубинштейн Г. Ш. Математическое программирование. Новосибирск, 1977.

25. Нейман Дж., Моргенштерн О. Теория игр и экономи­ческое поведение. М, 1970.

26. Оре О. Теория графов. М., 1968.

27. Таха X. Введение в исследование операций/ Пер. с англ. М.,1985.

28. Фиакко А., Мак-Кормик Г. Нелинейное программирова­ние. Методы последовательной безусловной минимизации. М.,1972.

29. Хедли Дж. Нелинейное и динамическое программирова­ние. М., 1967.

30. Юдин Д.Б., Гольштейн Е.Г. Линейное программирова­ние (теория, методы и приложения). М., 1969.

31. Юдин Д.Б., Гольштейн Е.Г. Линейное программирова­ние. Теория и конечные методы. М., 1963.

32. Lapin L. Quantitative methods for business decisions with cases. Fourth edition. HBJ, 1988.

33. Liitle I.D.C., Murty K.G„ Sweeney D.W., Karel C. An al­gorithm for traveling for the traveling salesman problem. — Operation Research, 1963, vol.11, No. 6, p. 972-989/ Русск. пер.: Литл Дж., Мурти К., Суини Д., Керел К. Алгоритм для решения задачи о коммивояжере. — В кн.: Экономика и мате­матические методы, 1965, т. 1, № 1, с. 94-107.

 

Содержание

ПРЕДИСЛОВИЕ............................................................................................................................................................................................................ 2

ВВЕДЕНИЕ.................................................................................................................................................................................................................... 3

ГЛАВА 1. ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ.......................................................................................................................................... 8

1.1. ПОСТАНОВКА ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ............................................................................................. 9

1.2. ОСНОВНЫЕ СВОЙСТВА ЗЛП И ЕЕ ПЕРВАЯ ГЕОМЕТРИЧЕСКАЯ ИНТЕРПРЕТАЦИЯ........................................................... 11

1.3. БАЗИСНЫЕ РЕШЕНИЯ И ВТОРАЯ ГЕОМЕТРИЧЕСКАЯ ИНТЕРПРЕТАЦИЯ ЗЛП..................................................................... 15

1.4. СИМПЛЕКС-МЕТОД........................................................................................................................................................................................ 17

1.5. МОДИФИЦИРОВАННЫЙ СИМПЛЕКС-МЕТОД..................................................................................................................................... 26

1.6. ТЕОРИЯ ДВОЙСТВЕННОСТИ В ЛИНЕЙНОМ ПРОГРАММИРОВАНИИ....................................................................................... 30

1.7. ДВОЙСТВЕННЫЙ СИМПЛЕКС-МЕТОД................................................................................................................................................... 37

КЛЮЧЕВЫЕ ПОНЯТИЯ.......................................................................................................................................................................................... 42

КОНТРОЛЬНЫЕ ВОПРОСЫ................................................................................................................................................................................... 43

ГЛАВА 2. НЕЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ................................................................................................................................. 44

2.1. МЕТОДЫ РЕШЕНИЯ ЗАДАЧ НЕЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ...................................................................................... 44

2.2. ДВОЙСТВЕННОСТЬ В НЕЛИНЕЙНОМ ПРОГРАММИРОВАНИИ................................................................................................... 55

КЛЮЧЕВЫЕ ПОНЯТИЯ.......................................................................................................................................................................................... 59

КОНТРОЛЬНЫЕ ВОПРОСЫ................................................................................................................................................................................... 59

ГЛАВА 3. ТРАНСПОРТНЫЕ И СЕТЕВЫЕ ЗАДАЧИ................................................................................................................................ 60

3.1. ТРАНСПОРТНАЯ ЗАДАЧА И МЕТОДЫ ЕЕ РЕШЕНИЯ........................................................................................................................ 60

3.2. СЕТЕВЫЕ ЗАДАЧИ........................................................................................................................................................................................... 66

КЛЮЧЕВЫЕ ПОНЯТИЯ.......................................................................................................................................................................................... 73

КОНТРОЛЬНЫЕ ВОПРОСЫ................................................................................................................................................................................... 73

ГЛАВА 4. ДИСКРЕТНОЕ ПРОГРАММИРОВАНИЕ................................................................................................................................... 74

4.1. ТИПЫ ЗАДАЧ ДИСКРЕТНОГО ПРОГРАММИРОВАНИЯ..................................................................................................................... 74

4.2. МЕТОД ГОМОРИ............................................................................................................................................................................................... 78

4.3. МЕТОД ВЕТВЕЙ И ГРАНИЦ.......................................................................................................................................................................... 81

КЛЮЧЕВЫЕ ПОНЯТИЯ.......................................................................................................................................................................................... 86

КОНТРОЛЬНЫЕ ВОПРОСЫ................................................................................................................................................................................... 86

ГЛАВА 5. ДИНАМИЧЕСКОЕ ПРОГРАММИРОВАНИЕ........................................................................................................................... 86

5.1. ОБЩАЯ СХЕМА МЕТОДОВ ДИНАМИЧЕСКОГО ПРОГРАММИРОВАНИЯ................................................................................. 86

5.2. ПРИМЕРЫ ЗАДАЧ ДИНАМИЧЕСКОГО ПРОГРАММИРОВАНИЯ.................................................................................................... 93

КЛЮЧЕВЫЕ ПОНЯТИЯ........................................................................................................................................................................................ 101

КОНТРОЛЬНЫЕ ВОПРОСЫ................................................................................................................................................................................ 101

ГЛАВА 6. КРАТКИЙ ОБЗОР ДРУГИХ РАЗДЕЛОВ ИССЛЕДОВАНИЯ ОПЕРАЦИЙ................................................................. 101

6.1. ТЕОРИЯ ИГР...................................................................................................................................................................................................... 101

6.2. ТЕОРИЯ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ........................................................................................................................................... 108

КЛЮЧЕВЫЕ ПОНЯТИЯ........................................................................................................................................................................................ 112

КОНТРОЛЬНЫЕ ВОПРОСЫ................................................................................................................................................................................ 112

СПИСОК ЛИТЕРАТУРЫ........................................................................................................................................................................................ 112

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: