Т. е. вечный двигатель первого рода —

периодически действующий двигатель, ко­торый совершал бы большую работу, чем сообщенная ему извне энергия,— невоз­можен (одна из формулировок первого начала термодинамики).

 

Из выражения (49.2) следует, что в данном случае раз­ным будет и давление, т. е. молекулы от зачерненной поверхности будут оттал­киваться с большей силой, чем от свет­лой, в результате чего листочек отклонит­ся. Это явление называется радиометри­ческим эффектом. На радиометрическом эффекте основано действие радиометриче­ского манометра.

Работа газа при изменении его объема

Для рассмотрения конкретных процессов найдем в общем виде внешнюю работу, совершаемую газом при изменении его объема. Рассмотрим, например, газ, на­ходящийся под поршнем в цилиндриче­ском сосуде (рис. 78). Если газ, расширя­ясь, передвигает поршень на бесконечно малое расстояние d l, то производит над ним работу

dA=Fdl=pSdl=pdV,

где S — площадь поршня, S dl=dV — из­менение объема системы. Таким образом,

dA=pdV. (52.1)

Полную работу A, совершаемую газом при изменении его объема от V 1до V 2, найдем

 

 

интегрированием формулы (52.1):

Результат интегрирования определяется характером зависимости между давлением и объемом газа. Найденное для работы выражение (52.2) справедливо при любых изменениях объема твердых, жидких и га­зообразных тел.

Произведенную при том или ином про­цессе работу можно изобразить графиче­ски с помощью кривой в координатах р, V. Например, изменение давления газа при его расширении изобразится кривой на рис. 79. При увеличении объема на dV совершаемая газом работа равна pdV, т. е. определяется площадью полоски с основанием d V на рисунке. Поэтому полная работа, совершаемая газом при расширении от объема V 1до объема V 2, определяется площадью, ограниченной осью абсцисс, кривой p = f(V) и прямыми V1 и V2.

Графически можно изображать только равновесные процессы — процессы, состо­ящие из последовательности равновесных состояний. Они протекают так, что измене­ние термодинамических параметров за ко­нечный промежуток времени бесконечно мало. Все реальные процессы неравновес­ны (они протекают с конечной скоростью), но в ряде случаев неравновесностью реальных процессов можно пренебречь (чем медленнее процесс протекает, тем он ближе к равновесному). В дальнейшем рассматриваемые процессы будем считать равновесными.

§ 53. Теплоемкость

Удельная теплоемкость вещества ве­личина, равная количеству теплоты, не­обходимому для нагревания 1 кг вещест­ва на 1 К:

Единица удельной теплоемкости — джоуль на килограмм-кельвин (Дж/(кг•К)).

Молярная теплоемкость— величина, равная количеству теплоты, необходимому для нагревания 1 моля вещества на 1 К:

где v = m/M — количество вещества, вы­ражающее число молей.

Единица молярной теплоемкости — джоуль на моль-кельвин (Дж/(моль•К)).

Удельная теплоемкость с связана с мо­лярной Сm соотношением

Ст = сМ, (53.2)

где М — молярная масса вещества.

Различают теплоемкости при постоян­ном объеме и постоянном давлении, если в процессе нагревания вещества его объем или давление поддерживается по­стоянным.

Запишем выражение первого начала термодинамики (51.2) для 1 моля газа с учетом формул (52.1) и (53.1):

CmdT = dUm + pdVm. (53.3)

Если газ нагревается при постоянном объеме, то работа внешних сил равна ну­лю (см. (52.1)) и сообщаемая газу извне теплота идет только на увеличение его внутренней энергии:

т. е. молярная теплоемкость газа при по­стоянном объеме Сv равна изменению внутренней энергии 1 моля газа при повы­шении его температуры на 1 К. Согласно формуле (50.1),

тогда

Cv = iR/2. (53.5)

Если газ нагревается при постоянном давлении, то выражение (53.3) можно за­писать в виде

Учитывая, что dUm/dT не зависит от вида процесса (внутренняя энергия идеального газа не зависит ни от р, ни от V, а опреде­ляется лишь температурой Т) и всегда равна Сv (см. (53.4)); продифферен­цировав уравнение Клапейрона — Мен­делеева pVm=RT (42.4) по T(p =const), получим

Cp = Cv + R. (53.6)

Выражение (53.6) называется уравнением Майера; оно показывает, что Ср всегда больше Сv на величину молярной газовой постоянной. Это объясняется тем, что при нагревании газа при постоянном давлении требуется еще дополнительное количество теплоты на совершение работы расшире­ния газа, так как постоянство давле­ния обеспечивается увеличением объема газа.

Использовав (53.5), выражение (53.6) можно записать в виде

При рассмотрении термодинамических процессов важно знать характерное для каждого газа отношение Ср к Cv:

g=Cp/Cv=(i+2)/i. (53.8)

Из формул (53.5) и (53.7) следует, что молярные теплоемкости определяются лишь числом степеней свободы и не за­висят от температуры. Это утверждение молекулярно-кинетической теории спра­ведливо в довольно широком интервале температур лишь для одноатомных газов. Уже у двухатомных газов число степеней свободы, проявляющееся в теплоемкости, зависит от температуры. Молекула двух­атомного газа обладает тремя поступательными, двумя вращательными и одной колебательной степенями свободы.

 

По закону равномерного распределе­ния энергии по степеням свободы (см. § 50), для комнатных температур Cv = 7 / 2 R. Из качественной эксперименталь­ной зависимости молярной теплоемкости Сv водорода (рис. 80) следует, что Cv за­висит от температуры: при низкой темпера­туре (»50 К) Cv= 3 / 2 R, при комнатной — Cv= 5 / 2 R (вместо расчетных 7/2 R!) и очень высокой — Сv=7/2/R. Это можно объяснить, предположив, что при низких температурах наблюдается только посту­пательное движение молекул, при ком­натных — добавляется их вращение, а при высоких — к этим двум видам дви­жения добавляются еще колебания моле­кул.

Расхождение теории и эксперимента нетрудно объяснить. Дело в том, что при вычислении теплоемкости надо учитывать квантование энергии вращения и колеба­ний молекул (возможны не любые враща­тельные и колебательные энергии, а лишь определенный дискретный ряд значений энергий). Если энергия теплового движе­ния недостаточна, например, для возбуж­дения колебаний, то эти колебания не вно­сят своего вклада в теплоемкость (соот­ветствующая степень свободы «заморажи­вается» — к ней неприменим закон равно­распределения энергии). Этим объясняет­ся, что теплоемкость моля двухатомного газа — водорода — при комнатной темпе­ратуре равна 5/2 R вместо 7/2 R. Аналогич­но можно объяснить уменьшение тепло­емкости при низкой температуре («замо­раживаются» вращательные степени сво-

Применение первого начала термодинамики к изопроцессам

Среди равновесных процессов, происходя­щих с термодинамическими системами, выделяются изопроцессы, при которых один из основных параметров состояния сохраняется постоянным.

Изохорный процесс (V = const). Диаг­рамма этого процесса (изохора) в коорди­натах р, V изображается прямой, парал­лельной оси ординат (рис. 81), где процесс 12 есть изохорное нагревание, а 13 — изохорное охлаждение. При изохорном процессе газ не совершает работы над внешними телами, т. е.

dA=pdV = 0.

Как уже указывалось в § 53, из первого начала термодинамики (dQ=dU +dA) для изохорного процесса следует, что вся теп­лота, сообщаемая газу, идет на увеличе­ние его внутренней энергии:

dQ =dU

Согласно формуле (53.4), dUm = CvdT.

Тогда для произвольной массы газа по­лучим

Изобарный процесс (р= const). Диаграмма этого процесса (изобара) в координатах р, V изображается прямой, парал­лельной оси V

 

. При изобарном процессе работа газа (см. (52.2)) при расширении объема от V 1до V 2 равна

и определяется площадью прямоугольни­ка, выполненного в цвете на рис. 82. Если использовать уравнение (42.5) Клапейро­на — Менделеева для выбранных нами двух состояний, то

откуда

Тогда выражение (54.2) для работы изо­барного расширения примет вид

Из этого выражения вытекает физический смысл молярной газовой постоянной R: если T2-T1=1К, то для 1 моля газа R=А, т. е. R численно равна работе изо­барного расширения 1 моля идеального газа при нагревании его на 1 К.

В изобарном процессе при сообщении газу массой от количества теплоты

его внутренняя энергия возрастает на ве­личину (согласно формуле (53.4))

При этом газ совершит работу, определяе­мую выражением (54.3).

 

Изотермический процесс (T =const). Как уже указывалось в § 41, изотермиче­ский процесс описывается законом Бой­ля — Мариотта:

pV= const.

Диаграмма этого процесса (изотерма) в координатах р, V представляет собой гиперболу (см. рис.60), расположенную на диаграмме тем выше, чем выше темпе­ратура, при которой происходил процесс. Исходя из выражений (52.2) и (42.5) найдем работу изотермического расшире­ния газа:

 

 

Так как при T =const внутренняя энергия идеального газа не изменяется:

то из первого начала термодинамики (dQ = dU+dA) следует, что для изотермиче­ского процесса

dQ=dA,

т. е. все количество теплоты, сообщаемое газу, расходуется на совершение им рабо­ты против внешних сил:

Следовательно, для того чтобы при рабо­те расширения температура не уменьша­лась, к газу в течение изотермического процесса необходимо подводить количест­во теплоты, эквивалентное внешней работе расширения.

Адиабатический процесс. Политропный процесс

Адиабатическим называется процесс, при котором отсутствует теплообмен (dQ=0) между системой и окружающей средой. К адиабатическим процессам можно от-

нести все быстропротекающие процессы. Например, адиабатическим процессом можно считать процесс распространения звука в среде, так как скорость распро­странения звуковой волны настолько вели­ка, что обмен энергией между волной и средой произойти не успевает. Адиаба­тические процессы применяются в двига­телях внутреннего сгорания (расширение и сжатие горючей смеси в цилиндрах), в холодильных установках и т. д.

Из первого начала термодинамики (dQ=dU+dA) для адиабатического про­цесса следует, что

dA=-dU, (55.1)

т. е. внешняя работа совершается за счет изменения внутренней энергии системы.

Используя выражения (52.1) и (53.4), для произвольной массы газа перепишем уравнение (55.1) в виде

Продифференцировав уравнение состоя­ния для идеального газа pV=(m/M)RT, получим

Исключим из (55.2) и (55.3) температу­ру Т:

Разделив переменные и учитывая, что Срv =g (см. (53.8)), найдем

dp/p=-gdV/V.

Интегрируя это уравнение в пределах от р 1до р 2и соответственно от V 1до V 2, а затем потенцируя, придем к выражению

p 2 /p l=(V1/V2)g.

или

p 1vg1 = p 2vg2.

Так как состояния 1 и 2 выбраны про­извольно, то можно записать

рVg= const. (55.4)

 

Полученное выражение есть уравнение адиабатического процесса, называемое также уравнением Пуассона.

Для перехода к переменным Т, V или р, Т исключим из (55.4) с помощью урав­нения Клапейрона — Менделеева

соответственно давление или объем:

Выражения (55.4) — (55.6) представ­ляют собой уравнения адиабатического процесса. В этих уравнениях безразмер­ная величина (см. (53.8) и (53.2))

называется показателем адиабаты (или коэффициентом Пуассона). Для одно­атомных газов (Ne, He и др.), достаточно хорошо удовлетворяющих условию иде­альности, i = 3, g=1,67. Для двухатомных газов (Н2, N2, O2 и др.) i= 5, g=1,4. Зна­чения g, вычисленные по формуле (55.7), хорошо подтверждаются экспериментом.

Диаграмма адиабатического процесса (адиабата) в координатах р, V изобража­ется гиперболой (рис.83). На рисунке видно, что адиабата (pVg=const) более крута, чем изотерма (pV =const). Это объясняется тем, что при адиабатическом сжатии 13 увеличение давления газа обусловлено не только уменьшением его объема, как при изотермическом сжатии, но и повышением температуры.

Вычислим работу, совершаемую газом в адиабатическом процессе. Запишем уравнение (55.2) в виде

Если газ адиабатически расширяется от объема V 1до V 2, то его температура уменьшается от T 1до T 2и работа расши­рения идеального газа

Применяя те же приемы, что и при выводе формулы (55.5), выражение (55.8) для работы при адиабатическом расшире­нии можно преобразовать к виду

Работа, совершаемая газом при адиа­батическом расширении 12 (определяется площадью, выполненной в цвете на рис. 83), меньше, чем при изотермическом. Это объясняется тем, что при адиабатическом расширении происходит охлаждение газа, тогда как при изотермическом — темпера­тура поддерживается постоянной за счет притока извне эквивалентного количества теплоты.

Рассмотренные изохорный, изобарный, изотермический и адиабатический процес­сы имеют общую особенность — они про­исходят при постоянной теплоемкости. В первых двух процессах теплоемкости соответственно равны Cv и С р, в изотерми­ческом процессе (d T= 0)теплоемкость равна ±¥, в адиабатическом (dQ=0) теплоемкость равна нулю. Процесс, в ко­тором теплоемкость остается постоянной, называется политропным.

Исходя из первого начала термодина­мики при условии постоянства теплоемко­сти (C = const) можно вывести уравнение политропы:

pVn = const, (55.9) где n= (C- Ср)/(С-Cv) — показатель политропы. Очевидно, что при С = 0, n=g из (55.9) получается уравнение адиабаты; при С=¥, n=1 —уравнение изотермы; при С=СР, n = 0 уравнение изобары, при С = Сv, n =±¥ —уравнение изохоры. Таким образом, все рассмотренные процессы являются частными случаями политропного процесса.

§56. Круговой процесс (цикл). Обратимые и необратимые процессы

Круговым процессом (или циклом) назы­вается процесс, при котором система, пройдя через ряд состояний, возвращает­ся в исходное. На диаграмме процессов цикл изображается замкнутой кривой (рис.84). Цикл, совершаемый идеальным газом, можно разбить на процессы расши­рения (12) и сжатия (21) газа. Рабо­та расширения (определяется площадью фигуры 1 a2V 2 V 1 1) положительна (dV>0), работа сжатия (определяется площадью фигуры 2b1V 1 V 2 2) отрицательна (dV<0), Следовательно, работа, совершаемая газом за цикл, определяется площадью, охватываемой замкнутой кривой. Если за цикл совершается положительная ра­бота (цикл протекает по часовой стрелке), то он называется пря­мым (рис. 84, а), если за цикл совершает­ся отрицательная работа (цикл протекает против часовой стрел­ки), то он называется обратным (рис. 84,б).

Прямой цикл используется в тепловых двигателях — периодически действующих двигателях, совершающих работу за счет полученной извне теплоты. Обратный цикл

используется в холодильных машинах — периодически действующих установках, в которых за счет работы внешних сил теплота переносится к телу с более высо­кой температурой.

В результате кругового процесса система возвращается в исходное состоя­ние и, следовательно, полное изменение внутренней энергии газа равно нулю. По­этому первое начало термодинамики (51.1) для кругового процесса

Q=DU+A=A, (56.1)

т. е. работа, совершаемая за цикл, равна количеству полученной извне теплоты. Од­нако в результате кругового процесса система может теплоту как получать, так и отдавать, поэтому

Q=Q1-Q2,

где Q1— количество теплоты, полученное системой, q 2— количество теплоты, от­данное системой. Поэтому термический коэффициент полезного действия для кру­гового процесса

Термодинамический процесс называет­ся обратимым, если он может происходить как в прямом, так и в обратном направле­нии, причем если такой процесс происхо­дит сначала в прямом, а затем в обратном направлении и система возвращается в ис­ходное состояние, то в окружающей среде и в этой системе не происходит никаких изменений. Всякий процесс, не удовлетво­ряющий этим условиям, является необра­тимым.

Любой равновесный процесс является обратимым. Обратимость равновесного процесса, происходящего в системе, следу­ет из того, что ее любое промежуточное состояние есть состояние термодинамиче­ского равновесия; для него «безразлично», идет процесс в прямом или обратном на­правлении. Реальные процессы сопровож­даются диссипацией энергии (из-за тре­ния, теплопроводности и т.д.), которая нами не обсуждается. Обратимые процес­сы — это идеализация реальных процес­сов. Их рассмотрение важно по двум при-чинам: 1) многие процессы в природе и технике практически обратимы; 2) обра­тимые процессы являются наиболее эконо­мичными; имеют максимальный термиче­ский коэффициент полезного действия, что позволяет указать пути повышения к. п. д. реальных тепловых двигателей.

§ 57. Энтропия, ее статистическое толкование и связь с термодинамической вероятностью

Понятие энтропии введено в 1865г. Р. Клаузиусом. Для выяснения физическо­го содержания этого понятия рассматри­вают отношение теплоты Q, полученной телом в изотермическом процессе, к темпе­ратуре Т теплоотдающего тела, называе­мое приведенным количеством теплоты.

Приведенное количество теплоты, со­общаемое телу на бесконечно малом участке процесса, равно d Q/T. Строгий теоретический анализ показывает, что приведенное количество теплоты, сообща­емое телу в любом обратимом круговом процессе, равно нулю:

Из равенства нулю интеграла (57.1), взя­того по замкнутому контуру, следует, что подынтегральное выражение d Q/T есть полный дифференциал некоторой фун­кции, которая определяется только состоя­нием системы и не зависит от пути, каким система пришла в это состояние. Таким образом,

Функция состояния, дифференциалом ко­торой является d Q/T, называется энтро­пией и обозначается S.

Из формулы (57.1) следует, что для обратимых процессов изменение энтропии

DS=0. (57.3)

В термодинамике доказывается, что эн­тропия системы, совершающей необрати­мый цикл, возрастает:

DS>0. (57.4)

Выражения (57.3) и (57.4) относятся только к замкнутым системам, если же система обменивается теплотой с внешней средой, то ее энтропия может вести себя любым образом. Соотношения (57.3) и (57.4) можно представить в виде не­равенства Клаузиуса

DS³0, (57.5)

т. е. энтропия замкнутой системы может либо возрастать (в случае необратимых процессов), либо оставаться постоянной (в случае обратимых процессов).

Если система совершает равновесный переход из состояния 1 в состояние 2, то, согласно (57.2), изменение энтропии

где подынтегральное выражение и преде­лы интегрирования надо выразить через величины, характеризующие исследуемый процесс. Формула (57.6) определяет эн­тропию лишь с точностью до аддитивной постоянной. Физический смысл имеет не сама энтропия, а разность энтропии.

Исходя из выражения (57.6), найдем изменение энтропии в процессах иде­ального газа. Так как d U=(m/M)Cv dT,

т. е. изменение энтропии DS1®2 идеального газа при переходе его из состояния 1 в со­стояние 2 не зависит от вида процесса перехода 1®2.

Так как для адиабатического процесса dQ = 0, то DS=0 и, следовательно, S=const, т. е. адиабатический обратимый

 

процесс протекает при постоянной энтро­пии. Поэтому его часто называют изоэнтропийным процессом. Из формулы (57.7) следует, что при изотермическом процессе (T1=T2)

при изохорном процессе (V 1 =V 2 )

Энтропия обладает свойством аддитивности: энтропия системы равна сумме энтропии тел, входящих в систему. Свойством аддитивности обладают также внутренняя энергия, масса, объем (темпе­ратура и давление таким свойством не обладают).

Более глубокий смысл энтропии вскры­вается в статистической физике, энтропия связывается с термодинамической веро­ятностью состояния системы. Термодина­мическая вероятность W состояния систе­мы — это число способов, которыми может быть реализовано данное состояние мак­роскопической системы, или 'число микро­состояний, осуществляющих данное мак­росостояние (по определению, 1, т. е. термодинамическая вероятность не есть вероятность в математическом смыс­ле (последняя £1!)).

Согласно Больцману (1872), энтропия S системы и термодинамическая вероят­ность связаны между собой следующим образом:

S = klnW, (57.8)

где k — постоянная Больцмана. Таким об­разом, энтропия определяется логариф­мом числа микросостояний, с помощью которых может быть реализовано данное макросостояние. Следовательно, энтропия может рассматриваться как мера вероятности состояния термодинамиче­ской системы. Формула Больцмана (57.8) позволяет дать энтропии следующее ста­тистическое толкование: энтропия являет­ся мерой неупорядоченности системы. В самом деле, чем больше число микросо­стояний, реализующих данное макрососто­яние, тем больше энтропия. В состоянии

равновесия — наиболее вероятного состо­яния системы — число микросостояний максимально, при этом максимальна и эн­тропия.

Так как реальные процессы необрати­мы, то можно утверждать, что все про­цессы в замкнутой системе ведут к увели­чению ее энтропии — принцип возраста­ния энтропии. При статистическом толко­вании энтропии это означает, что про­цессы в замкнутой системе идут в на­правлении увеличения числа микросостоя­ний, иными словами, от менее вероятных состояний к более вероятным, до тех пор пока вероятность состояния не станет мак­симальной.

Сопоставляя выражения (57.5) и (57.8), видим, что энтропия и термоди­намическая вероятность состояний за­мкнутой системы могут либо возрастать (в случае необратимых процессов), либо оставаться постоянными (в случае обрати­мых процессов).

Отметим, однако, что эти утверждения имеют место для систем, состоящих из очень большого числа частиц, но могут нарушаться в системах с малым числом частиц. Для «малых» систем могут на­блюдаться флуктуации, т. е. энтропия и термодинамическая вероятность состоя­ний замкнутой системы на определенном отрезке времени могут убывать, а не воз­растать, или оставаться постоянными.

Второе начало термодинамики

Первое начало термодинамики, выражая закон сохранения и превращения энергии, не позволяет установить направление про­текания термодинамических процессов. Кроме того, можно представить множе­ство процессов, не противоречащих перво­му началу, в которых энергия сохраняется, а в природе они не осуществляются. По­явление второго начала термодинамики — необходимость дать ответ на вопрос, какие процессы в природе возможны, а какие нет — определяет направление развития процессов.

Используя понятие энтропии и нера­венство Клаузиуса (см. §57), второе начало термодинамики можно сформулиро­вать как закон возрастания энтропии зам­кнутой системы при необратимых процес­сах: любой необратимый процесс в замкну­той системе происходит так, что энтропия системы при этом возрастает.

Можно дать более краткую формули­ровку второго начала термодинамики: в процессах, происходящих в замкнутой системе, энтропия не убывает. Здесь су­щественно, что речь идет о замкнутых системах, так как в незамкнутых системах энтропия может вести себя любым обра­зом (убывать, возрастать, оставаться по­стоянной). Кроме того, отметим еще раз, что энтропия остается постоянной в за­мкнутой системе только при обратимых процессах. При необратимых процессах в замкнутой системе энтропия всегда воз­растает.

Формула Больцмана (57.8) позволяет объяснить постулируемое вторым началом термодинамики возрастание энтропии в замкнутой системе при необратимых процессах: возрастание энтропии означает переход системы из менее вероятных в бо­лее вероятные состояния. Таким образом, формула Больцмана позволяет дать стати­стическое толкование второго начала термодинамики. Оно, являясь статистиче­ским законом, описывает закономерности хаотического движения большого числа частиц, составляющих замкнутую систе­му.

Укажем еще две формулировки второ­го начала термодинамики:

1) по Кельвину: невозможен круговой процесс, единственным результатом кото­рого является превращение теплоты, полу­ченной от нагревателя, в эквивалентную ей работу;

2 ) по Клаузиусу: невозможен круговой процесс, единственным результатом кото­рого является передача теплоты от менее нагретого тела к более нагретому.

Можно довольно просто доказать (предоставим это читателю) эквивален­тность формулировок Кельвина и Клаузи­уса.

Кроме того, показано, что если в за­мкнутой системе провести воображаемый процесс, противоречащий второму началу термодинамики в формулировке Клаузиуса, то он сопровождается уменьшением энтропии. Это же доказывает эквивален­тность формулировки Клаузиуса (а следо­вательно, и Кельвина) и статистичес­кой формулировки, согласно которой энт­ропия замкнутой системы не может убы­вать.

В середине XIX в. возникла проблема так называемой тепловой смерти Вселенной. Рас­сматривая Вселенную как замкнутую систему и применяя к ней второе начало термодинамики, Клаузиус свел его содержание к утверждению, что энтропия Вселенной должна достигнуть сво­его максимума. Это означает, что со временем все формы движения должны перейти в тепло­вую. Переход же теплоты от горячих тел к хо­лодным приведет к тому, что температура всех тел во Вселенной сравняется, т. е. наступит полное тепловое равновесие и все процессы во Вселенной прекратятся — наступит тепловая смерть Вселенной. Ошибочность вывода о теп­ловой смерти заключается в том, что бессмыс­ленно применять второе начало термодинамики к незамкнутым системам, например к такой без­граничной и бесконечно развивающейся систе­ме, как Вселенная. На несостоятельность выво­да о тепловой смерти указывал также Ф. Эн­гельс в работе «Диалектика природы».

Первые два начала термодинамики да­ют недостаточно сведений о поведении термодинамических систем при нуле Кель­вина. Они дополняются третьим началом термодинамики, или теоремой Нернста — Планка: энтропия всех тел в со­стоянии равновесия стремится к нулю по мере приближения температуры к нулю Кельвина:

Так как энтропия определяется с точно­стью до аддитивной постоянной, то эту постоянную удобно взять равной нулю (отметим, однако, что это произвольное допущение, поскольку энтропия по своей сущности всегда определяется с точно­стью до аддитивной постоянной). Из тео­ремы Нернста—Планка следует, что теп­лоемкости Ср и Cv при 0 К равны нулю.

 

Тепловые двигатели и холодильные машины. Цикл Карно и его к. п. д. для идеального газа

Из формулировки второго начала термо­динамики по Кельвину следует, что вечный двигатель второго рода — периодически действующий двигатель, совершающий работу за счет охлаждения одного источ­ника теплоты,— невозможен. Для ил­люстрации этого положения рассмотрим работу теплового двигателя (исторически второе начало термодинамики и возникло из анализа работы тепловых двигате­лей).

Принцип действия теплового двигате­ля приведен на рис. 85. От термостата с более высокой температурой Т 1, называ­емого нагревателем, за цикл отнимается количество теплоты Q1, а термостату с бо­лее низкой температурой T 2, называемому холодильником, за цикл передается коли­чество теплоты Q2, при этом совершается работа A = Q 1 -Q 2.

Чтобы термический коэффициент по­лезного действия теплового двигателя (56.2) был h=1, должно быть выполнено условие Q2=0, т. е. тепловой двигатель должен иметь один источник теплоты, а это невозможно. Так, французский физик и ин­женер Н. Л. С. Карно (1796—1832) пока­зал, что для работы теплового двигателя необходимо не менее двух источников теп­лоты с различными температурами, иначе это противоречило бы второму началу термодинамики.

Двигатель второго рода, будь он возможен, был бы практически вечным. Охлаждение, на­пример, воды океанов на 1° дало бы огромную энергию. Масса воды в мировом океане состав­ляет примерно 1018 т, при охлаждении которой на 1° выделилось бы примерно 1024 Дж теплоты, что эквивалентно полному сжиганию 1014 т угля. Железнодорожный состав, нагруженный этим количеством угля, растянулся бы на расстояние 1010 км, что приблизительно совпадает с разме­рами Солнечной системы!

Процесс, обратный происходящему в тепловом двигателе, используется в хо­лодильной машине, принцип действия ко­торой представлен на рис. 86. Системой за цикл от термостата с более низкой темпе­ратурой T 2 отнимается количество теплоты Q 2 и отдается термостату с более высокой температурой Т 1количество теплоты Q 1. Для кругового процесса, согласно (56.1), Q=A, но, по условию, Q=Q2-Q1<0, поэтому A<0 и Q2-Q1=-A, или Q1= Q 2 +A, т. е. количество теплоты Q1, от­данное системой источнику теплоты при более высокой температуре Т 1, больше количества теплоты Q2, полученного от источника теплоты при более низкой тем­пературе Т 2, на величину работы, совер­шенной над системой. Следовательно, без совершения работы нельзя отбирать теп­лоту от менее нагретого тела и отдавать ее более нагретому. Это утверждение есть не что иное, как второе начало термодинами­ки в формулировке Клаузиуса.

Однако второе начало термодинамики не следует представлять так, что оно со­всем запрещает переход теплоты от менее нагретого тела к более нагретому. Ведь именно такой переход осуществляется в холодильной машине. Но при этом надо помнить, что внешние силы совершают работу над системой, т. е. этот переход не является единственным результатом про­цесса.

Основываясь на втором начале термо­динамики, Карно вывел теорему, носящую теперь его имя: из всех периодически дей­ствующих тепловых машин, имеющих оди­наковые температуры нагревателей (T 1) и холодильников 2 ), наибольшим к. п. д. обладают обратимые машины; при этом

 

 

 

к. п. д. обратимых машин, работающих при одинаковых температурах нагревате­лей (T 1) и холодильников (T 2), равны друг другу и не зависят от природы рабочего тела (тела, совершающего круговой процесс и обменивающегося энергией с другими телами).

Карно теоретически проанализировал обратимый наиболее экономичный цикл, состоящий из двух изотерм и двух адиабат, и называемый циклом Карно. Рассмотрим прямой цикл Карно, в котором в качестве рабочего тела используется идеальный газ, заключенный в сосуд с подвижным порш­нем.

Цикл Карно изображен на рис. 87, где изотермические расширение и сжатие за­даны соответственно кривыми 12 и 34, а адиабатические расширение и сжатие — кривыми 23 и 4—1. При изотермическом процессе U =const, поэтому, согласно (54.4), количество теплоты Q1, полученное газом от нагревателя, равно работе рас­ширения A12, совершаемой газом при пере­ходе из состояния 1 в состояние 2:

При адиабатическом расширении 23 теплообмен с окружающей средой отсут­ствует и работа расширения А 23соверша­ется за счет изменения внутренней энергии (см. (55.1) и (55.8)):

Количество теплоты Q 2, отданное газом холодильнику при изотермическом сжа­тии, равно работе сжатия А 34.

Работа адиабатического сжатия

Работа, совершаемая в результате кругового процесса,

А=А12 + А23 + A 34 + A41= Q1+A23 -Q2 -A23=Q1-Q2

и, как можно показать, определяется пло­щадью, выполненной в цвете на рис. 87.

Термический к. п. д. цикла Карно, со­гласно (56.2),

h=A/Q1=(Q1-Q2)/Q1.

Применив уравнение (55.5) для адиабат 2—3 и 41, получим

откуда

V2/V1 = V3/V4. (59.3)

Подставляя (59.1) и (59.2) в формулу (56.2) и учитывая (59.3), получим

т. е. для цикла Карно к. п. д. действитель­но определяется только температурами на­гревателя и холодильника. Для его повы­шения необходимо увеличивать разность температур нагревателя и холодильника. Например, при T1=400 К и T2 = 300К h=0,25, Если же температуру нагревателя повысить на 100 К, а температуру холо­дильника понизить на 50 К, то h=0,5. К. п. д. всякого реального теплового двигателя из-за трения и неизбежных теп­ловых потерь гораздо меньше вычисленно­го для цикла Карно.

Обратный цикл Карно лежит в основе действия тепловых насосов. В отличие от холодильных машин тепловые насосы должны как можно больше тепловой энергии отдавать горячему телу, например системе отопления. Часть этой энергии отбирается от окружающей среды с более низкой тем­пературой, а часть — получается за счет механической работы, производимой, на­пример, компрессором.

Теорема Карно послужила основанием для установления термодинамической шкалы температур.

Сравнив левую и пра­вую части формулы (59.4), получим

T2/T1=Q2/Q1. (59.5)

т. е. для сравнения температур T 1и T 2 двух тел необходимо осуществить обрати­мый цикл Карно, в котором одно тело

используется в качестве нагревателя, дру­гое — холодильника. Из равенства (59.5) видно, что отношение температур тел рав­но отношению отданного в этом цикле количества теплоты к полученному. Со­гласно теореме Карно, химический состав рабочего тела не влияет на результаты сравнения температур, поэтому такая термодинамическая шкала не связана со свойствами какого-то определенного термометрического тела. Отметим, что практически таким образом сравнивать температуры трудно, так как реальные термодинамические процессы, как уже указывалось, являются необратимыми.

Реальные газы, жидкости и твердые тела

§ 60. Силы и потенциальная энергия межмолекулярного взаимодействия

Модель идеального газа, используемая в молекулярно-кинетической теории газов, позволяет описывать поведение разрежен­ных реальных газов при достаточно высо­ких температурах и низких давлениях. При выводе уравнения состояния идеаль­ного газа размерами молекул и их взаимо­действием друг с другом пренебрегают. Повышение давления приводит к умень­шению среднего расстояния между молекулами, поэтому необходимо учитывать объем молекул и взаимодействие между ними. Так, в 1 м3 газа при нормальных условиях содержится 2,68•1025 молекул, занимающих объем примерно 10-4 м3 (ра­диус молекулы примерно 10-10 м), кото­рым по сравнению с объемом газа (1 м3) можно пренебречь. При давлении 500 МПа (1 атм=101,3 кПа) объем моле­кул составит уже половину всего объема газа. Таким образом, при высоких дав­лениях и низких температурах ука­занная модель идеального газа непри­годна.

 

При рассмотрении реальных газов —

газов, свойства которых зависят от взаи­модействия молекул, надо учитывать силы межмолекулярного взаимодействия. Они

проявляются на расстояниях £10-9 м и быстро убывают при увеличении рассто­яния между молекулами. Такие силы на­зываются короткодействующими.

В XX в., по мере развития представле­ний о строении атома и квантовой механи­ки, было выяснено, что между молекулами вещества одновременно действуют силы притяжения и силы отталкивания. На рис. 88, а приведена качественная зависи­мость сил межмолекулярного взаимодей­ствия от расстояния r между молекулами, где F o и F п— соответственно силы оттал­кивания и притяжения, a F — их результи­рующая. Силы отталкивания считаются положительными, а силы взаимного при­тяжения — отрицательными.

На расстоянии r = r 0результирующая сила F =0, т. е. силы притяжения и оттал­кивания уравновешивают друг друга. Та­ким образом, расстояние r 0соответствует равновесному расстоянию между молеку­лами, на котором бы они находились в от­сутствие теплового движения. При r<r0

преобладают силы отталкивания (F>0), при r>r0 — силы притяжения (F<0). На расстояниях r>10-9 м межмолекулярные силы взаимодействия практически отсут­ствуют ( F®0).

Элементарная работа dA силы F при увеличении расстояния между молекула­ми на drсовершается за счет уменьше­ния взаимной потенциальной энергии мо­лекул, т. е.

dA=Fdr=-dП. (60.1)

Из анализа качественной зависимости по­тенциальной энергии взаимодействия мо­лекул от расстояния между ними (рис. 88, б) следует, что если молекулы находятся друг от друга на расстоянии, на котором межмолекулярные силы взаимо­действия не действуют (г®¥), то П=0. При постепенном сближении молекул между ними появляются силы притяжения (F<0), которые совершают положитель­ную работу (dA=Fdr>0). Тогда, со­гласно (60.1), потенциальная энергия вза­имодействия уменьшается, достигая мини­мума при r=r0. При r <r 0с уменьшением r силы отталкивания (F>0) резко воз­растают и совершаемая против них работа отрицательна (dA=Fdr<0). Потенци­альная энергия начинает тоже резко воз­растать и становится положительной. Из данной потенциальной кривой следует, что система из двух взаимодействующих мо­лекул в состоянии устойчивого равновесия (r=r0) обладает минимальной потенци­альной энергией.

Критерием различных агрегатных со­стояний вещества является соотношение величин Пmin и kT. Пmin — наименьшая потенциальная энергия взаимодействия молекул — определяет работу, которую нужно совершить против сил притяже­ния для того, чтобы разъединить моле­кулы, находящиеся в равновесии (r=r0); kT определяет удвоенную среднюю энер­гию, приходящуюся на одну степень сво­боды хаотического теплового движения молекул.

Если Пmin<<kT, то вещество находится в газообразном состоянии, так как интен­сивное тепловое движение молекул пре­пятствует соединению молекул, сблизившихся до расстояния r0, т. е. вероятность образования агрегатов из молекул доста­точно мала. Если IImin>> kT, то вещество находится в твердом состоянии, так как молекулы, притягиваясь друг к другу, не могут удалиться на значительные расстоя­ния и колеблются около положений равно­весия, определяемого r0. Если П min»kT, то вещество находится в жидком состоя­нии, так как в результате теплового дви­жения молекулы перемещаются в про­странстве, обмениваясь местами, но не расходясь на расстояние, превышающее r0. Таким образом, любое вещество в за­висимости от температуры может нахо­диться в газообразном, жидком или твер­дом агрегатном состоянии, причем темпе­ратура перехода из одного агрегатного состояния в другое зависит от значения Пmin для данного вещества. Например, у инертных газов Пmin мало, а у метал­лов — велико, поэтому при обычных (ком­натных) температурах они находятся со­ответственно в газообразном и твердом со­стояниях.

§61. Уравнение Ван-дер-Ваальса

Как уже указывалось в § 60, для реальных газов необходимо учитывать размеры мо­лекул и их взаимодействие друг с другом, поэтому модель идеального газа и уравнение Клапейрона—Менделеева (42.4) pV m= RT (для моля газа), описывающее иде­альный газ, для реальных газов непри­годны.

Учитывая собственный объем молекул и сил межмолекулярного взаимодействия, голландский физик И. Ван-дер-Ваальса (1837—1923) вывел уравнения состояния реального газа. Ван-дер-Ваальсом в урав­нение Клапейрона—Менделеева введены две поправки.

1. Учет собственного объема молекул. Наличие сил отталкивания, которые про­тиводействуют проникновению в занятый молекулой объем других молекул, сводит­ся к тому, что фактический свободный объем, в котором могут двигаться молеку­лы реального газа, будет не Vm, a Vm -b, где b — объем, занимаемый самими молекулами. Объем b равен учетверенному соб­ственному объему молекул. Если, напри­мер, в сосуде находятся две молекулы, то центр любой из них не может при­близиться к центру другой молекулы на расстояние, меньшее диаметра d молеку­лы. Это означает, что для центров обеих молекул оказывается недоступным сфери­ческий объем радиуса d, т. е. объем, рав­ный восьми объемам молекулы, а в расче­те на одну молекулу — учетверенный объем молекулы.

2. Учет притяжения молекул. Действие сил притяжения газа приводит к появле­нию дополнительного давления на газ, называемого внутренним давлением. По вычислениям Ван-дер-Ваальса, внутрен­нее давление обратно пропорционально квадрату молярного объема, т. е.

p' = a/V2m, (61.1)

где а— постоянная Ван-дер-Ваальса, ха­рактеризующая силы межмолекулярного притяжения, Vm — молярный объем.

Вводя эти поправки, получим уравне­ние Ван-дер-Ваальса для моля газа (урав­нение состояния реальных газов):

(p+a/V2m)(Vm-b)=RT. (61.2)

Для произвольного количества вещества v газа (v=т/М) с учетом того, что V = vVm, уравнение Ван-дер-Ваальса примет вид

где поправки а и b — постоянные для каж­дого газа величины, определяемые опыт­ным путем (записываются уравнения Ван-дер-Ваальса для двух известных из опыта состояний газа и решаются относительно а и b).

При выводе уравнения Ван-дер-Вааль­са сделан целый ряд упрощений, поэтому оно также весьма приближенное, хотя и лучше (особенно для несильно сжатых газов) согласуется с опытом, чем уравне­ние состояния идеального газа.

 

Уравнение Ван-дер-Ваальса не единствен­ное уравнение, описывающее реальные газы. Существуют и другие уравнения, некоторые из них даже точнее описывают реальные газы, но не рассматриваются из-за их сложности.

§ 62. Изотермы Ван-дер-Ваальса и их анализ

Для исследования поведения реального газа рассмотрим изотермы Ван-дер-Ва­альса — кривые зависимости р от Vm при заданных Т, определяемые уравнением Ван-дер-Ваальса (61.2) для моля газа. Эти кривые (рассматриваются для четы­рех различных температур; рис. 89) имеют довольно своеобразный характер. При вы­соких температурах (T>Tк) изотерма ре­ального газа отличается от изотермы иде­ального газа только некоторым искажени­ем ее формы, оставаясь монотонно спада­ющей кривой. При некоторой температуре Тк на изотерме имеется лишь одна точка перегиба К. Эта изотерма называется кри­тической, соответствующая ей температу­ра T ккритической температурой. Кри­тическая изотерма имеет лишь одну точку перегиба К, называемую критической точ­кой; в этой точке касательная к ней па­раллельна оси абсцисс. Соответствующие этой точке объем Vк и давление рк на­зываются также критическими. Состояние с критическими параметрами (рк, Vк, Тк) называется критическим состоянием. При низких температурах (Т<Тк) изотермы имеют волнообразный участок, сначала монотонно опускаясь вниз, затем монотонно поднимаясь вверх и снова монотонно опускаясь.

 

 

Для пояснения характера изотерм пре­образуем уравнение Ван-дер-Ваальса (61.2) к виду

pV3m-(RT+pb) V 2 m +a Vm -ab=0.

(62.1)

Уравнение (62.1) при заданных р и Т является уравнением третьей степени относительно V m; следовательно, оно мо­жет иметь либо три вещественных корня, либо один вещественный и два мнимых, причем физический смысл имеют лишь ве­щественные положительные корни. Поэто­му первому случаю соответствуют изотер­мы при низких температурах (три значения объема газа V 1, V 2и V 3отвечают (символ «т» для простоты опускаем) одному зна­чению давления р 1 ), второму случаю— изотермы при высоких температурах.

Рассматривая различные участки изо­термы при Т<Тк (рис.90), видим, что на участках 13 и 5—7 при уменьшении объема Vm давление р возрастает, что естественно. На участке 3—5 сжатие ве­щества приводит к уменьшению давления; практика же показывает, что такие со­стояния в природе не осуществляются. Наличие участка 3—5 означает, что при постепенном изменении объема вещество не может оставаться все время в виде однородной среды; в некоторый момент должно наступить скачкообразное измене­ние состояния и распад вещества на две фазы. Таким образом, истинная изотерма будет иметь вид ломаной линии 7— 6—2—1. Часть 7— 6 отвечает газообразному со­стоянию, а часть 2—1 — жидкому. В со­стояниях, соответствующих горизонталь-ному участку изотермы 6—2, наблюдается равновесие жидкой и газообразной фаз вещества. Вещество в газообразном со­стоянии при температуре ниже критиче­ской называется паром, а пар, находящий­ся в равновесии со своей жидкостью, на­зывается насыщенным.

Данные выводы, следующие из анали­за уравнения Ван-дер-Ваальса, были под­тверждены опытами ирландского ученого Т. Эндрюса (1813—1885), изучавшего изо­термическое сжатие углекислого газа. От­личие экспериментальных (Эндрюс) и тео­ретических (Ван-дер-Ваальс) изотерм за­ключается в том, что превращению газа в жидкость в первом случае соответствуют горизонтальные участки, а во втором — волнообразные.

Для нахождения критических пара­метров подставим их значения в уравне­ние (62.1) и запишем

pкV3-(RTк+pкb)V2+aV-ab= 0

(62.2)

(символ «т» для простоты опускаем). По­скольку в критической точке все три корня совпадают и равны Vк, уравнение приво­дится к виду

pк(V-Vк)3= 0,

или

pкV3-3pкVкV2+3pкV2кV-pкVк= 0.

(62.3)

Так как уравнения (62.2) и (62.3) тожде­ственны, то в них должны быть равны и коэффициенты при неизвестных соответ­ствующих степеней. Поэтому можно за­писать

ркV3к=ab, 3ркV2к=а, 3pкVк=RTк+pкb. Решая полученные уравнения, найдем: Vк = 3b, р к = а/(27b2), Tк=8a/(27Rb}.

(62.4)

Если через крайние точки горизонталь­ных участков семейства изотерм провести линию, то получится колоколообразная кривая (рис. 91), ограничивающая об­ласть двухфазных состояний вещества. Эта кривая и критическая изотерма делят

диаграмму р, Vm под изотермой на три области: под колоколообразной кривой располагается область двухфазных состо­яний (жидкость и насыщенный пар), сле­ва от нее находится область жидкого со­стояния, а справа — область пара. Пар отличается от остальных газообразных со­стояний тем, что при изотермическом сжа­тии претерпевает процесс сжижения. Газ же при температуре выше критической не может быть превращен в жидкость ни при каком давлении.

Сравнивая изотерму Ван-дер-Ваальса с изотермой Эндрюса (верхняя кривая на рис. 92), видим, что последняя имеет пря­молинейный участок 2—6, соответствую­щий двухфазным состояниям вещества. Правда, при некоторых условиях могут быть реализованы состояния, изображае­мые участками ван-дер-ваальсовой изо­термы 5—6 и 2—3. Эти неустойчивые со­стояния называются метастабильными. Участок 2—3 изображает перегретую жидкость, 5— 6 пересыщенный пар. Обе фазы ограниченно устойчивы

 

При достаточно низких температурах изотерма пересекает ось Vm, переходя в область отрицательных давлений (ниж­няя кривая на рис. 92). Вещество под отрицательным давлением находится в со­стоянии растяжения. При некоторых усло­виях такие состояния также реализуются. Участок 89 на нижней изотерме соответ­ствует перегретой жидкости, участок 910 — растянутой жидкости.

§ 63. Внутренняя энергия реального газа

Внутренняя энергия реального газа скла­дывается из кинетической энергии тепло­вого движения его молекул (определяет внутреннюю энергию идеального газа, равную CVT; см. § 53) и потенциальной энергии межмолекулярного взаимодей­ствия. Потенциальная энергия реального газа обусловлена только силами притяже­ния между молекулами. Наличие сил при­тяжения приводит к возникновению внут­реннего давления на газ (см. (61.1)):

p'=a/V 2m

Работа, которая затрачивается для прео­доления сил притяжения, действующих между молекулами газа, как известно из механики, идет на увеличение потенциаль­ной энергии системы, т. е. d A=p'dVm=d П, или dП=(a/V2m)dVm, откуда

П =-a/Vm

(постоянная интегрирования принята рав­ной нулю). Знак минус означает, что моле­кулярные силы, создающие внутреннее давление р', являются силами притяжения (см. § 60).

Учитывая оба слагаемых, получим, что внутренняя энергия моля реального газа

Um = CVT-a/Vm (63.1)

растет с повышением температуры и уве­личением объема.

Если газ расширяется без теплообмена с окружающей средой (адиабатический процесс, т. е. d Q = 0) и не совершает внешней работы (расширение газа в вакуум, т. е. dA=0), то на основании первого начала термодинамики (dQ=(U2-U1 )+dA) получим, что

U 1 =U2. (63.2)

Следовательно, при адиабатическом рас­ширении без совершения внешней работы внутренняя энергия газа не изменяется.

Равенство (63.2) формально справед­ливо как для идеального, так и для реаль­ного газов, но физически для обоих случа­ев совершенно различно. Для идеального газа равенство U 1 =U 2означает равенст­во температур 1 2 ), т. е. при адиаба­тическом расширении идеального газа в вакуум его температура не изменяется. Для реального газа из равенства (63.2), учитывая, что для моля газа

U 1 =CVT 1 -a/V1, U 2 =CVT 2 -a/V 2,

(63.3) получаем

Так как V 2 >V 1, то Т 1 2, т. е. реальный газ при адиабатическом расширении в ва­куум охлаждается. При адиабатическом сжатии реальный газ нагревается.

§ 64. Эффект Джоуля — Томсона

Если идеальный газ адиабатически рас­ширяется и совершает при этом работу, то он охлаждается, так как работа в данном случае совершается за счет его внутрен­ней энергии (см. § 55). Подобный процесс, но с реальным газом — адиабатическое расширение реального газа с совершением внешними силами положительной рабо­ты — осуществили английские физики Дж. Джоуль (1818—1889) и У. Томсон (лорд Кельвин, 1824—1907).

Рассмотрим эффект Джоуля — Томсо­на. На рис. 93 представлена схема их опыта. В теплоизолированной трубке с по­ристой перегородкой находится два пор­шня, которые могут перемещаться без трения.

 

Пусть сначала слева от перего­родки газ под поршнем 1 находится под давлением р 1, занимает объем V 1при тем­пературе Т 1, а справа газ отсутствует (по-

 

ршень 2 придвинут к перегородке). После прохождения газа через пористую перего­родку в правой части газ характеризуется параметрами р 2, V 2, Т 2. Давления р 1и р 2 поддерживаются постоянными (р 1> р 2).

Так как расширение газа происходит без теплообмена с окружающей средой (адиабатически), то на основании первого начала термодинамики

d Q =(U 2- U 1)+d A =0. (64.1)

Внешняя работа, совершаемая газом, со­стоит из положительной работы при дви­жении поршня 2 (A 2= p 2 V 2) и отрицатель­ной при движении поршня 1 (A 1 =p 1 V 1 ), т.е. d A = A 2- А 1. Подставляя выраже­ния для работ в формулу (64.1), полу­чим

U 1 +p 1 V 1 =U 2 +p 2 V 2. (64.2)

Таким образом, в опыте Джоуля — Томсона сохраняется (остается неизменной) ве­личина U+pV. Она является функцией состояния и называется энтальпией.

Ради простоты рассмотрим 1 моль га­за. Подставив в формулу (64.2) выраже­ние (63.3) и рассчитанные из уравнения Ван-дер-Ваальса (61.2) значения p 1 V 1 и p 2 V 2(символ «m» опять опускаем) и производя элементарные преобразова­ния, получим

Из выражения (64.3) следует, что знак разности (T 2 -T 1 ) зависит от того, какая из поправок Ван-дер-Ваальса играет боль­шую роль. Проанализируем данное выражение, сделав допущение, что p 2<< p 1

и V 2>> V 1:

1) a»0— не учитываем силы притя­жения между молекулами, а учитываем лишь размеры самих молекул. Тогда

т. е. газ в данном случае нагревается;

2) b»0 - не учитываем размеров мо­лекул, а учитываем лишь силы притяже­ния между молекулами. Тогда

т. е. газ в данном случае охлаждается;

3) учитываем обе поправки. Подставив в выражение (64.3) вычисленное из урав­нения Ван-дер-Ваальса (61.2) значение p 1, имеем

т. е. знак разности температур зависит от значений начального объема V 1и началь­ной температуры Т 1.

Изменение температуры реального га­за в результате его адиаб


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: