Функции проводящей системы сердца

Спонтанная генерация ритмических импульсов является резуль­татом слаженной деятельности многих клеток синусно-предсердного узла, которая обеспечивается тесными контактами (нексусы) и электротоническим взаимодействием этих клеток. Возникнув в синусно-предсердном узле, возбуждение распространяется по проводящей системе на сократительный миокард.

Особенностью проводящей системы сердца является способность каждой клетки самостоятельно генерировать возбуждение. Сущест­вует так называемый градиент автоматии, выражающийся в убывающей способности к автоматии различных участков прово­дящей системы по мере их удаления от синусно-предсердного узла, генерирующего импульса с частотой до 60—80 в минуту.

Наличие проводящей системы обеспечивает ряд важных физиологических особенностей сердца 1) ритмическую ге­нерацию импульсов (потенциалов действия); 2) необходимую по­следовательность (координацию) сокращений предсердий и желу­дочков; 3) синхронное вовлечение в процесс сокращения клеток миокарда желудочков (что увеличивает эффективность систолы).

Автоматия — способность самостоятельно генерировать ПД для сокращения миокарда всего сердца; денервированное сердце продолжает сокращаться, так как автоматизмом обладают даже рабочие кардиомиоциты, однако скорость спонтанной диастолической деполяризации у них минимальна.

Природа автоматии Автоматизм сердца имеет миогенную природу и обусловлен спонтанной активностью части клеток его атипической ткани. В определенных участках миокарда эти клетки образуют скопления. Наиболее важным в функциональном отношении является синусный или синоатриальный узел, расположенный между местом впадения верхней полой вены и ушком правого предсердия.

Градиент автоматии – это уменьшение способности к автоматии по мере удаления от синоатриального узла.

Волна возбуждения последовательно охватывает различные отделы сердца в направлении от правого предсердия к верхушке. Данное направление отражает градиент автоматии сердца, он выражается в убывающей способности к автоматии различных структур проводящей системы по мере их удаления от синусно – предсердного узла.

В синусно-предсердном узле число разрядов составляет 60-80 имп/мин; в предсердно-желудочковом 40-50 имп/мин; в клетках пучка Гиса 30-40 имп/мин; в волокнах Пуркинье 20 имп/мин.

 

40. Регуляция работы сердца: миогенная гетеро- и гомеометрическая регуляция, рефлекторная регуляция.

 

Внутрисердечные механизмы регуляции делятся на 3 группы:

1) внутриклеточные,

2) гемодинамические (гетеро- и гомеометрические),

3) внутрисердечные периферические рефлексы.
Гемодинамические, или миогенные, механизмы регуляции обеспечивают постоянство систолического объема крови. Сила сокращений сердца зависит от его кровенаполнения, т.е. от исходной длины мышечных волокон и степени их растяжения во время диастолы. Чем больше растянуты волокна, тем больше приток крови к сердцу, что приводит к увеличению силы сердечных сокращений во время систолы - это "закон сердца" (закон Франка-Старлинга).

Она объясняется способностью Са2+ выходить из саркоплазматического ретикулума. Чем больше растянут саркомер, тем больше выделяется Са2+ и тем больше сила сокращений сердца. Этот механизм саморегуляции включается при перемене положения тела, при резком увеличении объема циркулирующей крови (при переливании), а также при фармакологической блокаде симпатической нервной системы бета-симпатолитиками.

Гомеометрическая авторегуляция сердца связана с определенными межклеточными отношениями и не зависит от предсистолического растяжения. Большую роль играют вставочные диски-нексусы, через которые миокардиоциты обмениваются ионами и информацией. Реализуется данная форма регуляции в виде ―эффекта Анрепа‖ – увеличение силы сердечного сокращения при возрастании сопротивления в магистральных сосудах (повышение давления в аорте) и нагрузки, которая возникает в аорте или легочном стволе (феномен Анрепа). При этом длина сердечной мышцы не меняется. Поэтому данные механизмы называются гомеометрическими.

Феномен Анрепа (1912) заключается в том, что при повышении давления в аорте или легочном стволе сила сердечных сокращений (сокращений желудочков) автоматически возрастает, обеспечивая тем самым возможность выброса такого же объема крови, как и при меньшей величине артериального давления в аорте или легочном стволе.

Итак, чем больше противонагрузка, тем больше сила сокращения, а в итоге —постоянство систолического объема.
Гомеометрическая авторегуляция не зависит от исходной длины кардиомиоцитов. Сила сердечных сокращений может возрастать при увеличении частоты сокращений сердца. Чем чаще оно сокращается, тем выше амплитуда его сокращений ("лестница" Боудича). При повышении давления в аорте до определенных пределов возрастает противонагрузка на сердце, происходит увеличение силы сердечных сокращений (феномен Анрепа).
Лестница Боудича:

- При повышении ЧСС растет сила сокращения.

- Обусловлено это тем, что за малую диастолу весь Са2+ не успеет откачаться, поэтому его концентрация при следующем ПД возрастает быстрее.

 

Гетерометрический механизм опосредован внутриклеточными взаимодействиями и связан с изменением взаиморасположения актиновых и миозиновых нитей в миофибриллах кардиомиоцитов при растяжении миокарда кровью, поступающей в полости сердца.

Растяжение миокардиоцитов приводит к увеличению количества миозиновых мостиков, способных соединить миозиновые и актиновые нити во время сокращения.Чем более растянут кардиомиоцит, тем на большую величину он может укоротиться при сокращении, и тем более сильным будет это сокращение.

• характеризуется высокой чувствительностью.

• Его можно наблюдать при введении в магистральные вены всего 1 – 2% общей массы циркулирующей крови,

тогда как рефлекторные механизмы изменений деятельности сердца реализуются при в/в введениях не менее 5 – 10% крови.

Сердце иннервируется вегетативной нервной системой. Деятельность сердца регулируется двумя парами нервов: блуждающими и симпатическими. Блуждающие нервы берут начало в продолговатом мозге, а симпатические нервы отходят от шейного симпатического узла. Блуждающие нервы тормозят сердечную деятельность. Если начать раздражать блуждающий нерв электрическим током, то происходит замедление и даже остановка сердечных сокращений. После прекращения раздражения блуждающего нерва работа сердца восстанавливается.

 

Парасимпатические волокна идут к сердцу в составе блуждающего нерва от его ядра, заложенного в продолговатом мозге и прерываются в самом сердце, в интрамуральных ганглиях.

Симпатические нервы идут к сердцу от ядер, заложенных в боковых рогах спинного мозга с 1 по 5 грудной сегмент. Выходя по передним корешкам, преганглионарные волокна входят в симпатическую цепочку, поднимаются вверх и прерываются в звездчатом и двух верхних шейных симпатических узлах, где лежат эфферентные симпатические нейроны. От них постганглионарные волокна направляются к сердцу.

 

Под влиянием импульсов, поступающих к сердцу по симпатическим нервам, учащается ритм сердечной деятельности и усиливается каждое сердечное сокращение. При этом возрастает систолический, или ударный, объем крови.

Блуждающий и симпатический нервы сердца обычно действуют согласованно: если повышается возбудимость центра блуждающего нерва, то соответственно понижается возбудимость центра симпатического нерва.

Парасимпатические нервы сердца представлены аксонами нейронов вагуса, отходящих от него с обеих сторон в области шеи. Эфферентные нейроны, или преганглионарные нейроны, регулирующие деятельность сердца, прерываются в интрамуральных ганглиях, откуда начинается короткий путь постганглионарных нейронов. В их окончаниях выделяется ацетилхолин, который оказывает также четыре эффекта, но все отрицательные, т. е. уменьшает частоту сердечных сокращений, их силу, уменьшает проводимость и возбудимость сердечной мышцы (соответственно отрицательные хроно-, ино-, дромо- и батмотропный эффекты).Волокна от правого блуждающего нерва иннервируют преимущественно правое предсердие, и особенно обильно синоатриальный узел. К атриовентрикулярному узлу подходят главным образом волокна от левого блуждающего нерва. В связи с этим правый вагус влияет преимущественно на частоту сокращений сердца, левый — на атриовентрикулярное проведение.

 

К кардиомиоцитам желудочков вагус не имеет прямого отношения. Очевидно, снижение силы сокращения желудочков обусловлено главным образом уменьшением скорости проведения возбуждения по миокарду и за счет снижения возбудимости. Тела одних нейронов, образуют блуждаюшие нервы, расположенные в продолговатом мозге. Их аксоны образуют преганглионарные волокна, идут в интрамуральные ганглии, расположенные в стенке сердца. Здесь находятся вторые нейроны, аксоны которых образуют постганглионарные волокна и иннервируют сино-атриальный узел, мышечные волокна предсердий, атриовентрикулярный узел и начальную часть проводящей системы желудочков.

Волокна правого блуждающего нерва иннервируют синоатриальный узел, левого - атриовентрикулярный. Блуждающий нерв не иннервирует желудочки.

 

 

Симпатические сердечные волокна — это преганглионарные и постганглионарные нейроны, аксоны которых достигают сердца. Преганглионарные симпатические нейроны локализованы в области грудного отдела спинного мозга (Т1—Т5), которые прерываются в симпатических ганглиях — верхнем, среднем и нижнем шейных ганглиях, а также в верхнем грудном ганглии, который часто объединяется с нижним шейным в так называемый звездчатый ганглий. Первые нейроны, образуют симпатические нервы, иннервирующие сердце, расположены в боковых рогах 5 верхних грудных сегментов СМ, их аксоны (преганглионарные волокна) заканчиваются в шейных и верхних грудных симпатических узлах, в которых находятся 2 нейроны, отростки которых (постганглионарные волокна) идут к сердцу. Большая часть отходит от звездчатого ганглия. Симпатическая иннервация более равномерно распределена по всем отделам сердца. Постганглионарные симпатические волокна в составе нескольких сердечных нервов подходят ко всем кардиомиоцитам предсердий и желудочков. Однако интенсивность иннервации выше в области предсердий. Симпатоадреналовая система влияет на сердце также посредством катехоламинов, выделяющихся в кровь из мозгового слоя надпочечников.Симпатические нервы повышают автоматизм всех отделов проводящей системы сердца. Поэтому при угнетении ведущего пейсмекера СА-узла именно от влияния этих нервов может завивисеть, как скоро функции водителя ритма возьмет на себя пейсмекер второго порядка и насколько действенным будет его эффект. оказывают положительное хронотропное действие на пейсмекерные клетки, спонтанная активность которых была угнетена какими-либо экзогенными факторами.

 

При сильном раздражении блуждающего нерва происходит увеличение МП (гиперполяризация), которое обусловлено повышением проницаемости мембраны для ионов K+, что препятствует развитию деполяризации. Кроме того, вызванное ацетилхолином повышение K-проводимости противодействует потенциал-зависимому входящему току Ca++ и проникновению его ионов внутрь кардиомиокарда.

Сердечные центры продолговатого мозга и моста непосредственно управляют деятельностью сердца. Это управление обеспечивается вегетативной иннервацией — передачей сигналов по симпатическим и парасимпатическим нервам. Они изменяют

• частоту сокращений (хронотропное действие),

• силу сокращений (инотропное действие)

• скорость атриовентрикулярного проведения (дромотропное действие).

• возбудимость сердечной мышцы (батмотропное действие)

Передатчиками нервных влияний на сердце служат химические медиаторы —норадреналин в симпатической нервной системе и ацетилхолин в парасимпатической.

 

Симпатическая система оказывает положительное влияние на все эти эффекты, а парасимпатическая - отрицательное. Например: положительный хроноторопный эффект - это увеличение частоты сердечных сокращений, отрицательный инотропный эффект- уменьшение силы сокращения миокарда.

 

Сердце – обильно иннервированный орган, с большим количеством рецепторов, что позволяет говорить о нем как о

рефлексогенной зоне. Существенное значение имеют две популяции механорецепторов, сосредоточенных в

предсердиях и левом желудочке:

• A-рецепторы реагируют на изменение напряжения сердечной стенки;

• B-рецепторы возбуждаются при ее пассивном растяжении. Афферентные волокна от этих рецепторов идут в составе блуждающих нервов.

• Свободные чувствительные нервные окончания, расположенные непосредственно под миокардом, представляют собой терминали афферентных волокон, проходящих в составе симпатических нервов. Именно эти структуры участвуют в развитии болевого синдрома с сегментарной иррадиацией, характерного для приступов ИБС, включая инфаркт миокарда.

 

41. Большой и малый круги кровообращения. Строение и функциональная классификация сосудов.

 

Малый круг кровообращения - легочной круг - служит для обогащения крови кислородом в легких. Он начинается от правого желудочка и заканчивается левым предсердием.

Из правого желудочка сердца венозная кровь поступает в легочной ствол (общая легочная артерия), которая вскоре делится на две ветви,- несущие кровь к правому и левому легкому.

В легких артерии разветвляются на капилляры. В капиллярных сетях, оплетающих легочные пузырьки, кровь отдает углекислоту и получает взамен новый запас кислорода (легочное дыхание). Насыщенная кислородом кровь приобретает алый цвет, становится артериальной и поступает из капилляров в вены, которые, слившись в четыре легочные вены (по две с каждой стороны), впадают в левое предсердие сердца. В левом предсердии заканчивается малый (легочный) круг кровообращения, а поступившая в предсердие артериальная кровь переходит через левое атриовентрикулярное отверстие в левый желудочек, где начинается большой круг кровообращения. Следовательно, в артериях малого круга кровообращения течет венозная кровь, а в его венах - артериальная.

 

Большой круг кровообращения - телесный - собирает венозную кровь от верхней и нижней половины туловища и аналогично распределяет артериальную; начинается от левого желудочка и заканчивается правым предсердием.

Из левого желудочка сердца кровь поступает в самый крупный артериальный сосуд - аорту. Артериальная кровь содержит необходимые для жизнедеятельности организма питательные вещества и кислород и имеет ярко-алый цвет.

Аорта разветвляется на артерии, которые идут ко всем органам и тканям тела и переходят в толще их в артериолы и далее в капилляры. Капилляры в свою очередь собираются в венулы и далее в вены. Через стенку капилляров происходит обмен веществ и газообмен между кровью и тканями тела. Протекающая в капиллярах артериальная кровь отдает питательные вещества и кислород и взамен получает продукты обмена и углекислоту (тканевое дыхание). Вследствие этого поступающая в венозное русло кровь бедна кислородом и богата углекислотой и потому имеет темную окраску - венозная кровь; при кровотечении по цвету крови можно определить, какой сосуд поврежден - артерия или вена. Вены сливаются в два крупных ствола - верхнюю и нижнюю полые вены, которые впадают в правое предсердие сердца. Этим отделом сердца заканчивается большой (телесный) круг кровообращения.

Дополнением к большому кругу является третий (сердечный) круг кровообращения, обслуживающий само сердце. Он начинается выходящими из аорты венечными артериями сердца и заканчивается венами сердца. Последние сливаются в венечный синус, впадающий в правое предсердие, а остальные вены открываются в полость предсердия непосредственно.

 

Кровено́сные сосу́ды — эластичные трубчатые образования в теле животных и человека, по которым силой ритмически сокращающегося сердца или пульсирующего сосуда осуществляется перемещение крови по организму: к органам и тканям по артериям, артериолам, артериальным капиллярам, и от них к сердцу — по венозным капиллярам, венулам и венам.

Функциональное назначение различных отделов сердечно-сосудистой системы классифицировано (Б.И.Ткаченко) следующим образом:

Генератор давления и расхода крови — сердце, подающее кровь в аорту и легочную артерию во время систолы.

 

Сосуды высокого давления — аорта и крупные артериальные сосуды, в которых поддерживается высокий уровень кровяного дав­ления.

Сосуды — стабилизаторы давления — мелкие артерии и артериолы, которые путем сопротивления кровотоку и во взаимоотно­ шении с сердечным выбросом, поддерживают оптимальный для сис­темы уровень давления.

Распределители капиллярного кровотока — терминальные сосу­ды, гладкомышечные образования которых при сокращении прекра­щают кровоток в капилляре или возобновляют его (при расслабле­нии),. обеспечивая необходимое в данной ситуации число функци­онирующих и нефункционирующих капилляров.

Обменные сосуды капилляры и частично посткапиллярные участки венул, функция которых состоит в обеспечении обмена между кровью и тканями.

Аккумулирующие сосуды –венулы и мелкие вены, активные или пассивные изменения просвета которых ведут к накоплению крови (с возможностью ее последующего использования) или к экс­тренному выбросу ее в циркуляцию. Функция этих сосудов в ос­новном емкостная, но они обладают и резистивной функцией, хотя и намного меньшей, чем стабилизаторы давления.

Сосуды возврата крови — крупные венозные коллекторы и полые вены, через которые обеспечивается подача крови к сердцу.

Шунтирующие сосуды — различного типа анастомозы, соеди­ няющие между собой артериолы и венулы и обеспечивающие ненутритивный кровоток.

Резорбтивные сосуды — лимфатический отдел системы крово­ обращения, в котором главная функция лимфатических капилляров состоит в резорбции из тканей белков и жидкости, а лимфатических сосудов — в транспортировке резорбированного материала обратно в кровь.

Все кровеносные сосуды выстланы изнутри слоем эндотелия, непосредственно прилегающим к просвету сосуда. Эндотелий обычно состоит из одного слоя плоских клеток, образующих гладкую внутреннюю поверхность сосудов. Если эта поверхность не повреждена, то она препятствует свертыванию крови.

Кроме эндотелия, во всех сосудах, за исключением капилляров, имеются эластиновые волокна, коллагеновые волокна и гладкомышечные волокна, количество которых различается в разных сосудах.

Эластические волокна, особенно волокна внутренней оболочки, образуют относительно густую сеть. Они создают эластическое напряжение, которое противодействует кровяному давлению, растягивающему сосуд. На создание такого напряжения не расходуется энергия биохимических процессов.

Коллагеновые волокна средней и наружной оболочек образуют сеть, которая оказывает растяжению сосуда гораздо большее сопротивление, чем эластические волокна. Коллагеновые волокна относительно свободно располагаются в стенке сосуда и иногда образуют складки. Они противодействуют давлению только тогда, когда сосуд уже растянут до определенной степени.

Веретенообразные гладкомышечные клетки (диаметром около 4 мкм, длиной около 20 мкм) электрически соединены друг с другом и механически связаны с эластическими и коллагеновыми волокнами. Главная функция гладкомышечных волокон - создавть активное напряжение сосудистой стенки (сосудистый тонус) и изменять величину просвета сосудов в зависимости от физиологических потребностей.

Большая часть кровеносных сосудов иннервируется волокнами вегетативной нервной системы.

 

42. Кровяное давление, факторы его определяющие. Изменение кровяного давления по ходу сосудистого русла.

 

Кровь течет от области высокого давления к области низкого давления: из

- аорты (где среднее давление состав­ляет 100 мм рт.ст.) кровь течет через
- систему магистральных арте­рий (80 мм рт.ст.) и
- артериол (40-60 мм рт.ст.) в

- капилляры (15-25 мм рт.ст.),откуда поступает в

- венулы (12-15 мм рт.ст.),
- веноз­ные коллекторы (3-5 мм рт.ст.) и
- полые вены (1-3 мм рт.ст.).

Центральное венозное давление — давление в правом предсердии — составляет около 0 мм рт.ст.
В легочной артерии (где течет веноз­ная кровь) кровяное давление составляет 18-25 мм рт.ст.
В легоч­ной вене — 3-4 мм рт.ст.
В левом предсердии — 2-3 мм рт.ст.

 

43. Неpвная регуляция сосудистого тонуса. Сосудодвигательный центр. Вазоконстрикторные и вазодилататорные эфферентные нервы и их медиаторы.

 

Рефлекторные измене­ния тонуса артерий — сосудистые рефлексы — могут быть разделены на две группы: собственные и сопряженные рефлексы.

Собственные сосудистые рефлексы. Вызываются сиг­налами от рецепторов самих сосудов. Особенно важное физиологи­ческое значение имеют рецепторы, сосредоточенные в дуге аорты и в области разветвления сонной артерии на внутреннюю и наруж­ную. Указанные участки сосудистой системы получили название сосудистых рефлексогенных зон.

Рецепторы, расположенные в дуге аорты, являются окончаниями центростремительных волокон, проходящих в составе аортального нерва. Это нерв депрессор. Электрическое раздражение центрального конца нер­ва обусловливает падение АД вследствие рефлекторного повышения тонуса ядер блуждающих нервов и рефлекторного снижения тонуса сосудосуживающего центра. В результате сердечная деятельность тормозится, а сосуды внутренних органов расширяются. Если у подопытного животного, например у кролика, перерезаны блужда­ющие нервы, то раздражение аортального нерва вызывает только рефлекторное расширение сосудов без замедления сердечного ритма.

В рефлексогенной зоне сонного синуса (каротидный синус, sinus caroticus) расположены рецепторы, от которых идут центростреми­тельные нервные волокна, образующие синокаротидный нерв, или нерв Геринга. Этот нерв вступает в мозг в составе языкоглоточного нерва. При введении в изолированный каротидный синус крови через канюлю под давлением можно наблюдать падение АД в сосудах тела. Понижение системного АД обусловлено тем, что растяжение стенки сонной артерии возбуждает рецепторы каротидного синуса, рефлекторно понижает тонус сосудосуживающего цен­тра и повышает тонус ядер блуждающих нервов.

Рецепторы сосудистых рефлексогенных зон возбуждаются при повышении давления крови в сосудах, поэтому их называют прессорецепторами, или барорецепторами. Если перерезать синокаротидные и аортальные нервы с обеих сторон, возникает гипертензия, т. е. устойчивое повышение АД, достигающее в сонной артерии собаки 200—250 мм рт.ст. вместо 100—120 мм рт.ст. в норме.

Понижение АД вследствие, например, уменьшения объема крови в организме (при кровопотерях), ослабления деятельности сердца или при перераспределении крови и оттоке ее в избыточно расши­рившиеся кровеносные сосуды какого-нибудь крупного органа ведет к тому, что прессорецепторы дуги аорты и сонных артерий раздра­жаются менее интенсивно, чем при нормальном АД. Влияние аор­тальных и синокаротидных нервов на нейроны сердечно-сосудистого центра ослабляется, сосуды суживаются, работа сердца усиливается и АД нормализуется. Этот способ регуляции АД представляет собой регуляцию «на выходе» системы, работающую по принципу отрицательной обратной связи. При отклонении АД от заданной вели­чины включаются компенсаторные реакции, восстанавливающие это давление до нормы. Это — регуляция «по рассогласованию».

 

Существует еще один, принципиально иной, механизм регуляции АД «на выходе» системы, «по возмущению». В данном случае компен­саторные реакции включаются еще до того, как АД изменится, пре­дупреждая отклонение его от нормы. Необходимые для этого реакции запускаются сигналами, возникающими в рецепторах растяжения миокарда и коронарных сосудов, несущих информацию о степени на­полнения кровью полостей сердца и артериальной системы. В этом случае регуляторные реакции реализуются через внутрисердечную нервную систему, а также через вегетативные центры ЦНС.

Сосудистые рефлексы можно вызвать, раздражая рецепторы не только дуги аорты или каротидного синуса, но и сосудов некоторых других областей тела. Так, при повышении давления в сосудах легкого, кишечника, селезенки наблюдаются рефлекторные изме­нения АД в других сосудистых областях.

Рефлекторная регуляция давления крови осуществляется при по­мощи не только механорецепторов, но и хеморецепторов, чувстви­тельных к изменениям химического состава крови. Такие хеморецепторы сосредоточены в аортальном и сонном гломусе (glomus caroticum, каротидные тельца), т. е. в местах локализации хеморецепторов.

Хеморецепторы чувствительны к СО2 и недостатку кислорода в крови; они раздражаются также СО, цианидами, никотином. От этих рецепторов возбуждение по центростремительным нервным волокнам передается к сосудодвигательному центру и вызывает повышение его тонуса. В результате сосуды суживаются и давление повышается. Од­новременно происходит возбуждение дыхательного центра.

Таким образом, возбуждение хеморецепторов аорты и сонной артерии вызывает сосудистые прессорные рефлексы, а раздражение механорецепторов — депрессорные рефлексы Хеморецепторы обнаружены также в сосудах селезенки, надпо­чечников, почек, костного мозга. Они чувствительны к различным химическим соединениям, циркулирующим в крови, например к ацетилхолину, адреналину и др. (В. Н. Черниговский).

 

Сопряженные сосудистые рефлексы. Это рефлексы, возникающие в других системах и органах, проявляются преиму­щественно повышением АД. Их можно вызвать, например, раздра­жением поверхности тела. Так, при болевых раздражениях рефлекторно суживаются сосуды, особенно органов брюшной полости, и АД повышается. Раздражение кожи холодом также вызывает ре­флекторное сужение сосудов, главным образом кожных артериол.

Кортикальная регуляция сосудистого тонуса. Влияние коры большого мозга на сосуды было впервые доказано путем раздражения определенных участков коры. Кортикальные сосудистые реакции у человека изучены методом условных рефлексов. В этих опытах о сужении или расширении сосудов судят по изменению объема руки при плетизмографии. Если сосуды суживаются, то кровенаполнение, а следовательно, и объем органа уменьшаются. При расширении сосудов, наоборот, кровена­полнение и объем органа увеличиваются.

Если многократно сочетать какое-либо раздражение, например согревание, охлаждение или болевое раздражение участка кожи с каким-нибудь индифферентным раздражителем (звуковым, свето­вым и т. п.), то через некоторое число подобных сочетаний один индифферентный раздражитель может вызвать такую же сосудистую реакцию, как и безусловное раздражение.

Сосудистая реакция на ранее индифферентный раздражитель осуществляется условнорефлекторным путем, т. е. при участии коры большого мозга. У человека при этом часто возникает и соответст­вующее ощущение (холода, тепла или боли), хотя никакого раз­дражения кожи не было. Влиянием коры большого мозга объясняется то, что у спортсменов перед началом упражнения или соревнования наблюдается повы­шение артериального давления, вызванное изменениями деятельно­сти сердца и сосудистого тонуса.

В. Ф. Овсянниковым (1871) было установлено, что нервный центр, обеспечивающий определенную степень сужения артериального русла — сосудодвигательный центр — находится в продолго­ватом мозге. Локализация этого центра определена путем перерезки ствола мозга на разных уровнях. Если перерезка произведена у собаки или кошки выше четверохолмия, то АД не изменяется. Если перере­зать мозг между продолговатым и спинным мозгом, то максимальное давление крови в сонной артерии понижается до 60—70 мм рт.ст. Сосудодвигательный центр локализован в продолго­ватом мозге на дне IV желудочка и состоит из двух отделов — прессорного и депрессорного, и находится в состоянии тонической активности, т. е. дли­тельного постоянного возбуждения. Устранение его влияния вызывает расширение сосудов и падение АД. Он Раздражение прессорного отдела сосудодвигательного центра вызывает сужение артерий и подъем, а раздражение второго — расширение артерий и падение АД.

Считают, что депрессорный отдел сосудодвигательного центра вызывает расширение сосудов, понижая тонус прессорного отдела и снижая, таким образом, эффект сосудосуживающих нервов.

Влияния, идущие от сосудосуживающего центра продолговатого мозга, приходят к нервным центрам симпатической части вегета­тивной нервной системы, расположенным в боковых рогах грудных сегментов спинного мозга, регулирующих тонус сосудов отдельных участков тела. Спинномозговые центры способны через некоторое время после выключения сосудосуживающего центра продолговатого мозга немного повысить давление крови, снизившееся вследствие расширения артерий и артериол.

Кроме сосудодвигательных центров продолговатого и спинного мозга, на состояние сосудов оказывают влияние нервные центры промежуточного мозга и больших полушарий.

 

Сосудодвигательный центр состоит из 2-х отделов: сосудосуживающего и сосудорасширяющего. Импульсация по депрессорным нервам распространяется преимущественно к нервным клеткам, составляющим сосудосуживающий отдел сосудодвигательного центра ПМ. Сосудосуживающий центр составляют преимущественно симпатические нейроны, которые оказывают постоянное тоническое влияние на периферические артериолы, суживая их просвет.

Сосудодвигателъный центр головного мозга контролирует сосудосуживающую систему. Он расположен билатерально в ретикулярной формации продолговатого мозга и нижней трети моста. Сосудодвигательный центр направляет парасимпатические импульсы по блуждающим нервам к сердцу, а также симпатические импульсы через спинной мозг и периферические симпатические нервы практически ко всем артериям, артериолам и венам организма.

1. Сосудосуживающая зона, расположенная билатерально в верхней переднебоковой части продолговатого мозга. Аксоны нервных клеток, расположенных в этой зоне, проходят в спинной мозг, где возбуждают преганглионарные нейроны симпатической сосудосуживающей системы.

2. Сосудорасширяющая зона, расположенная билатерально в нижней переднебоковой части продолговатого мозга. Аксоны нервных клеток, расположенных в этой зоне, направляются к сосудосуживающей зоне. Они тормозят активность нейронов сосудосуживающей зоны и таким образом способствуют расширению сосудов.

3. Сенсорная зона, расположенная билатерально в пучке одиночного тракта в заднебоковой части продолговатого мозга и моста. Нейроны этой зоны получают сигналы, идущие по чувствительным нервным волокнам от сердечно-сосудистой системы главным образом в составе блуждающего и языкоглоточного нервов. Сигналы, выходящие из сенсорной зоны, контролируют активность как сосудосуживающей, так и сосудорасширяющей зон сосудодвигательного центра. Так осуществляется рефлекторный контроль над системой кровообращения. Примером может служить барорецепторный рефлекс, контролирующий уровень артериального давления.

 

44. Морфофункциональные особенности системы дыхания. Аэрогематический барьер. Этапы дыхания.

 

Изнутри полость носа выстлана слизистой оболочкой, которая содержит большое количество слизистых клеток, вырабатывающих слизь, очищающую выдыхаемый воздух и защищающую слизистую от пересыхания и микроорганизмов. В передних отделах носа на слизистой оболочке имеется большое количество волосков, которые препятствуют попаданию в полость носа пыли и других мелких частиц. На слизистой оболочке верхней раковины носа располагается рецепторная зона, отвечающая за обоняние. Функции: согревание вдыхаемого воздуха, его очищение и обеззараживание, распознавание запахов.

Гортань — орган дыхательной системы, участвующий в проведении воздуха от глотки к трахее и голосообразовании. Располагается в области шеи на уровне 4-6 шейных позвонков.

Хрящевой каркас гортани образован девятью гиалиновыми хрящами, 3 из которых непарные (надгортанный, перстневидный и щитовидный) и 3 парные (клиновидный, рожковидный, черпаловидный). Самый большой из хрящей — щитовидный, особенно заметен у мужчин после полового созревания, в виде выступа на передней поверхности шеи, и называется в народе "адамовым яблоком".

Для функции голосообразования большое значение имеют черпаловидные хрящи, между отростками которых натянуты голосовые связки. Свободное пространство между голосовыми связками называют голосовой щелью. Звук образуется при изменении натяжения голосовых связок и сужении или расширении голосовой щели во время прохождения через неё потока воздуха. Процесс образования звуков контролируется человеком осознанно.

Звукообразованию так же способствуют три группы мышц — это мышцы, регулирующие напряжение голосовых связок, мышцы, которые расширяют голосовую щель и мышцы, которые ее сужают.

Трахея выполняет функцию проведения воздуха от гортани к лёгким, а также очищает, увлажняет и согревает проводимый воздух. Трахея начинается на уровне шестого шейного позвонка, а на уровне пятого грудного позвонка разделяется на два главных бронха. Анатомически трахея представляет собой дыхательную трубку. Каркас передней поверхности трахеи представлен 16-20 гиалиновыми хрящами, которые имеют вид полуколец, задняя же поверхность образована связками, замыкающими полукольца хрящей. Гибкая задняя стенка способствует беспрепятственному прохождению пищевого комка по пищеводу, расположенному позади трахеи. Внутренняя выстилка трахеи представлена мерцательным эпителием с многочисленными слизистыми железами. Поверхность эпителия покрыта ресничками, которые находятся в постоянном движении.

При прохождении воздуха через трахею мелкие взвешенные в нём инородные частицы улавливаются ворсинками и, благодаря их волнообразным движениям, перемещаются в сторону верхних дыхательных путей, обволакиваются слизью и выводятся из организма при чихании или кашле.

Бронхами называют ветви дыхательного горла (т.н. бронхиальное дерево). Деление трахеи на два главных бронха происходит на уровне четвертого (у женщин — пятого) грудного позвонка. Правый бронх является более толстым и коротким, к тому же расположен более вертикально, чем левый. Бронхиальное дерево включает в себя главные бронхи — правый и левый, долевые бронхи (1-го порядка), зональные (2-го порядка), сегментарные и субсегментарные (3, 4, 5 порядков), мелкие (от 6-го до 15-го порядков) и наконец, терминальные бронхиолы, за которыми начинаются респираторные отделы легких (цель которых — выполнять газообменную функцию). Строение бронхов не является одинаковым на протяжении всего бронхиального дерева, хотя и имеет общие черты. Бронхи обеспечивают проведение воздуха от трахеи к альвеолам и обратно, а к тому же способствуют очищению воздуха от посторонних примесей и выведению их из организма. Крупные инородные тела удаляются из бронхов при помощи кашля. А более мелкие (пылевые частицы) или микроорганизмы, попавшие в дыхательные пути, удаляются с помощью колебаний ресничек эпителиальных клеток, которые обеспечивают продвижение бронхиального секрета в сторону трахеи.

Легкие – это парные органы расположены в грудной полости, прилегают слева и справа к сердцу. Легкие имеют форму полуконусов, основанием прилежащих к диафрагме, верхушкой выступающих выше ключицы на 2-3 см. Правое легкое имеет три доли, левое – две. Скелет легких состоит из древовидно ветвящихся бронхов.

Каждое легкое снаружи покрывает серозная оболочка – легочная плевра. Легкие лежат в плевральном мешке, образованном легочной плеврой (висцеральной) и выстилающей изнутри грудную полость пристеночной плеврой (париетальной). Каждая плевра снаружи содержит железистые клетки, продуцирующие жидкость в полость между листками плевры (плевральную полость). На внутренней (кардиальной) поверхности каждого легкого есть углубление – ворота легких. В ворота легких входят легочная артерия и бронхи, а выходят две легочные вены. Легочные артерии ветвятся параллельно бронхам.

Легочная ткань состоит из долек пирамидальной формы, основанием обращенных к поверхности. В вершину каждой дольки входит бронх, последовательно делящийся с образованием концевых бронхиол (18-20). Каждая бронхиола заканчивается ацинусом – структурно-функциональным элементом легких. Ацинусы состоят из альвеолярных бронхиол, которые делятся на альвеолярные ходы. Каждый альвеолярный ход заканчивается двумя альвеолярными мешочками. Альвеолы – это полушаровидные выпячивания, состоящие из соединительнотканных волокон. Они выстланы слоем эпителиальных клеток и обильно оплетены кровеносными капиллярами. Именно в альвеолах осуществляется главная функция легких – процессы газообмена между атмосферным воздухом и кровью. При этом в результате диффузии кислород и углекислый газ, преодолевая диффузионный барьер (эпителий альвеол, базальная мембрана, стенка кровеносного капилляра), проникают от эритроцита до альвеолы и наоборот.

Этапы дыхания:

1. Внешнее дыхание - обмен газов между атмосферой и альвеолами – легочными пузырьками. Осуществляется благодаря изменениям объема грудной клетки и сопутствующим им изменениям объема легких. Во время вдоха объем грудной клетки увеличивается, а во время выдоха - уменьшается. В дыхательных движениях участвуют: дыхательные пути, которые по своим свойствам являются слегка растяжимыми, сжимаемыми и создают поток воздуха.

2. Обмен газов между альвеолами и кровью легочных капилляров. Газообмен О2 и СО2 через альвеолярно-капиллярную мембрану происходит с помощью диффузии, которая осуществляется в два этапа. На первом этапе диффузионный перенос газов происходит через аэрогематический барьер, на втором - происходит связывание газов в крови легочных капилляров. Движение газов происходит в результате разницы парциальных давлений. Для О2 градиент направлен в сторону крови, для СО2 градиент давления направлен в обратную сторону, и СО2 с выдыхаемым воздухом уходит в окружающую среду. Газообмен кислорода между альвеолярным воздухом и кровью происходит благодаря наличию концентрационного градиента 02 между этими средами. В капиллярах легких основная масса поступающего в кровь О2 вступает в химическую связь с гемоглобином. Кровь человека содержит примерно 700 - 800 г гемоглобина и может связывать 1 л кислорода.

3. Транспорт газов кровью - процесс переноса О2 от легких к тканям и СО2 от тканей - к легким. Кислород транспортируется в крови с помощью гемоглобина эритроцитов, белка с присоединенной к нему железосодержащей группой. Гемоглобин в определенных условиях может присоединять и переносить О2, в а других отдавать его. Углекислый газ в крови находится в трех фракциях: физически растворенный, химически связанный в виде бикарбонатов и химически связанный с гемоглобином в виде карбогемоглобина. Эритроциты переносят в 3 раза больше СО2 чем плазма.

4. Обмен О2 и СО2 между кровью капилляров и клетками тканей организма.

5. Внутреннее, или тканевое, дыхание - биологическое окисление в митохондриях клетки.

Аэрогематический барьер включает следую­щие основные структуры:
- эпителий альвеолы
- две основные мембраны
- интерстициальное (межклеточное) про­странство
- эндотелий капилляра
Часто аэрогематический барьер представляют следую­щим образом: пленку сурфактанта, эпителий альвеолы, две основные мембраны, интерстициальное (межклеточное) про­странство, эндотелий капилляра, плазму крови и мембрану эритроцита
Толщина аэрогематического барьера составляет около 1 мкм, полощадь – около 80 м2.

 

45. Внешнее дыхание. Биомеханика вдоха и выдоха. Факторы, обуславливающие эластическую тягу легких. Роль сурфактанта в вентиляции легких.

 

Внешне дыхание проявляется в периодическом изменении объема грудной клетки: объем грудной клетки то увеличивается - вдох, то уменьшается - выдох.

Вдох (инспирация) - является активным актом, так как осуществляется при помощи специализированных дыхательных мышц. К ним относятся наружные межреберные мышцы и диафрагма или грудобрюшная преграда. Большое значение в дыхании имеет диафрагма - во время выдоха ее купол далеко выстоит в грудной полости, во время вдоха он опускается, вследствие чего объем грудной клетки увеличивается. Кроме того диафрагма во время сокращения отодвигает нижние ребра к периферии, что также ведет к увеличению емкости грудной клетки. Причем, чем сильнее сокращения диафрагма, тем больше увеличивается ее объем.

Выдох (экспирация), в отличие от вдоха, является преимущественно пассивным актом, так как в его осуществлении не принимают участие мышцы. Он происходит за счет следующих факторов: эластической тяги легких, эластического сопротивления реберных хрящей, сопротивления внутренних органов, тяжести грудной клетки. При глубоком же выдохе, этот процесс становится активным, так как он выполняется при помощи внутренних межреберных мышц. Специфическое прикрепление этих мышц с внутренней стороны грудной клетки и их ход позволяет уменьшать активно объем грудной клетки за счет смещения ребер.

Механизм вдоха. Вдох обеспечивается расширением грудной клетки вследствие сокращения дыхательных мышц – наружных межреберных и диафрагмы. Поступление воздуха в легкие в значительной степени зависит от отрицательного давления в плевральной полости.

Механизм выдоха. Выдох (экспирация) осуществляется в результате расслабления дыхательной мускулатуры, а также вследствие эластической тяги легких, стремящихся занять исходное положение. Эластические силы легких представлены тканевым компонентом и силами поверхностного натяжения, которые стремятся сократить альвеолярную сферическую поверхность до минимума. Однако альвеолы в норме никогда не спадаются. Причина этого – наличие в стенках альвеол поверхностно-активного стабилизирующего вещества – сурфактанта, вырабатываемого альвеолоцитами.

 

При спокойном дыхании при вдохе (инспирация) происходит сокращение вдыхательной мускулатуры, а при выдохе (экспирация) — расслабление этой мускулатуры. При усиленном дыхании сокращается также выдыхательная мускулатура.

Вдох короче выдоха. Продолжительность выдоха приблизительно в 1,5 раза превышает время вдоха. Обычный выдох — пассивный акт. Расслабление вдыхательной мускулатуры приводит к опусканию грудной клетки вследствие действия силы тяжести и эластического напряжения ранее скрученных при вдохе хрящевых концов ребер и связок. Органы брюшной полости, опустившиеся при сокращении диафрагмы, поднимаются. Кроме того, при вдохе эластически растягиваются легкие.

Во время вдоха размеры грудной клетки увеличиваются и легкие также увеличивают свои размеры, следуя при этом за движениями грудной клетки.

Длительность вдоха у взрослого человека от 0,9 до 4,7 с, длительность выдоха1,2—6 с. Дыхательные движения совершаются с определенным ритмом и частотой, которые определяют по числу экскурсий грудной клетки в 1 мин. У взрослого человека частота дыхательных движений составляет 12—18 в 1 мин


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: