Arithmetic and Logic Unit (ALU)

The arithmetic and logic unit (ALU) of a computer system is the place where the actual execution of the instructions take place during the processing operations. All calculations are performed and all comparisons (decisions) are made in the ALU. The data and instructions, stored in the primary storage prior to processing are transferred as and when needed to the ALU where processing takes place. No processing is done in the primary storage unit. Intermediate results generated in the ALU are temporarily transferred back to the primary storage until needed at a later time. Data may thus move from primary storage to ALU and back again as storage many times before the processing is over. After the completion of processing, the final results which are stored in the storage unit are released to an output device.

The arithmetic and logic unit (ALU) is the part where actual computations take place. It consists of circuits that perform arithmetic operations (e.g. addition, subtraction, multiplication, division over data received from memory and capable to compare numbers (less than, equal to, or greater than).

While performing these operations the ALU takes data from the temporary storage are inside the CPU named registers. Registers are a group of cells used for memory addressing, data manipulation and processing. Some of the registers are general purpose and some are reserved for certain functions. It is a high-speed memory which holds only data from immediate processing and results of this processing. If these results are not needed for the next instruction, they are sent back to the main memory and registers are occupied by the new data used in the next instruction.

All activities in the computer system are composed of thousands of individual steps. These steps should follow in some order in fixed intervals of time. These intervals are generated by the Clock Unit. Every operation within the CPU takes place at the clock pulse. No operation, regardless of how simple, can be performed in less time than transpires between ticks of this clock. But some operations required more than one clock pulse. The faster the clock runs, the faster the computer performs. The clock rate is measured in megahertz (Mhz) or Gigahertz (Ghz). Larger systems are even faster. In older systems the clock unit is external to the microprocessor and resides on a separate chip. In most modern microprocessors the clock is usually incorporated within the CPU.

Control Unit

How the input device knows that it is time for it to feed data into the storage unit? How does the ALU know what should be done with the data once it is received? And how is it that only the final results are sent to the output devices and not the intermediate results? All this is possible because of the control unit of the computer system. By selecting, interpreting, and seeing to the execution of the program instructions, the control unit is able to maintain order and directs the operation of the entire system. Although, it does not perform any actual processing on the data, the control unit acts as a central nervous system for the other components of the computer. It manages and coordinates the entire computer system. It obtains instructions from the program stored in main memory, interprets the instructions, and issues signals that cause other units of the system to execute them.

The control unit directs and controls the activities of the internal and external devices. It interprets the instructions fetched into the computer, determines what data, if any, are needed, where it is stored, where to store the results of the operation, and sends the control signals to the devices involved in the execution of the instructions.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: