Источники сварочного тока

Источники сварочного тока должны обладать хорошими динамическими свойствами, т. е. мгновенно реагировать на изменения вольтамперной характеристики сварочной дуги, что отличает их от источников тока, питающих силовую и осветительную (бытовую) сети, которые должны обеспечивать постоянное напряжение независимо от нагрузки (величины тока, идущего потребителям). Их внешняя вольтамперная характеристика близка к прямой, параллельной абсциссе и называется жесткой (линия А на рис. 3.6).

Внешней характеристикой источника тока называется зависимость напряжения на его выходных клеммах от тока в сварочной цепи.

Обмотку сварочных генераторов и трансформаторов необходимо предохранить от разрушения токами короткого замыкания при возбуждении дуги. Поэтому внешняя вольтамперная характеристика источников сварочного тока должна быть падающей (кривая Б на рис. 3.6). Напряжение при их работе уменьшается с увеличением тока, а при токе короткого замыкания оно падает до нуля.

Напряжение холостого хода обычно 60–80В, что достаточно для зажигания дуги и относительно безопасно для работы сварщика. Точка 1 на рис. 3.6 соответствует режиму холостого хода в работе источника тока, т. е. в период, когда дуга не горит и сварочная цепь разомкнута. Точка 3 соответствует режиму короткого замыкания при зажигании дуги, когда напряжение стремится к нулю, а ток повышается. Величина тока ограничена, чтобы не допустить перегрева токопроводящих проводов и источников тока.

Режим устойчивого горения дуги определяется точкой 2 на рис. 3.6 при пересечении вольтамперных характеристик дуги (кривая В) и источника сварочного тока (кривая Б).

Рис. 3.6. Внешние характеристики источников питания и электростатическая характеристика дуги

Для питания сварочной дуги применяют источники переменного тока (сварочные трансформаторы) и источники постоянного тока (сварочные генераторы, выпрямители). Источники переменного тока более распространены.

Сварочные трансформаторы проще и надежнее в эксплуатации, долговечнее, у них выше КПД.

Однако устойчивость дуги при использовании постоянного тока значительно выше, чем при применении переменного тока. При питании переменным током нормальной частоты (50 Гц) происходит синусоидальное изменение напряжения и тока; ток в секунду 100 раз меняет свое направление, дуга периодически гаснет и зажигается, а при наличии недостаточной ионизации между электродами может прерваться.

При постоянном токе повышается устойчивость горения дуги, улучшаются условия сварки в различных пространственных положениях, появляется возможность вести сварку на прямой и обратной полярностях. Последнее, вследствие более высокой температуры на аноде, позволяет проводить сварку электродами с тугоплавкими покрытиями и флюсами. Выбор источника питания дуги определяется конкретными условиями производства.

В современной сварочной технике применяют разные системы сварочных трансформаторов.

Трансформатор с отдельной дроссельной катушкой. Падающая вольт-амперная характеристика этого трансформатора (рис. 3.7, б, кривая 1) обеспечивается последовательным включением индуктивного сопротивления дросселя.

Понижающий трансформатор (рис. 3.7, а) состоит из магнитопровода 3 (сердечника), первичной 1 и вторичной 2 обмоток. Он снижает напряжение сети 220 или 380 В до напряжения холостого хода 60–80 В. Дроссель 5 предназначен для получения падающей внешней характеристики и регулирования величины сварочного тока. При прохождении переменного тока через обмотку дросселя 5, установленную на магнитопроводе 4 и представляющую собой катушку с большим индуктивным сопротивлением, в ней возбуждается ЭДС самоиндукции, направленная противоположно основному напряжению.

Причем чем выше величина сварочного тока, тем больше падает напряжение на дросселе и уменьшается величина напряжения на дуге. Этим обеспечивают получение падающей внешней характеристики сварочного трансформатора (рис. 3.7, б).

Регулирование сварочного тока производится изменением воздушного зазора δ в дроссельной катушке с помощью рукоятки 6. Увеличение зазора приводит к увеличению сварочного тока I св 2 и уменьшению кривизны падающей вольтамперной характеристики источника питания сварочной дуги.

Уменьшение зазора соответствует уменьшению сварочного тока I св1 и увеличению кривизны вольт-амперной характеристики (рис. 3.7, б).

Рис. 3.7. Сварочный трансформатор с отдельной дроссельной катушкой: а – схема; б – внешние характеристики трансформатора (1) и сварочной дуги (2)

Устойчивость горения дуги достигается сдвигом во времени между нулевыми значениями напряжения и тока на обмотке дросселя. Плавное регулирование величины сварочного тока обеспечивают изменением воздушного зазора рукояткой 6 в сердечнике дросселя. С увеличением зазора индуктивное сопротивление дросселя уменьшается, а сварочный ток увеличивается от I св1 до I св2, при уменьшении зазора – наоборот (рис. 3.7, б).

Трансформатор с увеличенным магнитным рассеянием и подвижной вторичной обмоткой (рис. 3.8). При работе трансформатора основной магнитный поток Ф0, создаваемый первичной 1 и вторичной 2 обмотками, замыкается через магнитопровод 3. Часть магнитного потока ответвляется и замыкается вокруг обмоток через воздушное пространство, образуя потоки рассеяния Ф S 1 и Ф S 2, которые индуктируют в обмотках ЭДС, противоположную основному напряжению. С увеличением сварочного тока увеличиваются потоки рассеяния и, следовательно, возрастает индуктивное сопротивление вторичной обмотки, что создает падающую внешнюю характеристику.

Для обеспечения плавного регулирования сварочного тока изменяют расстояние между обмотками трансформатора. При сближении обмоток (рис. 3.8, б) частично уничтожаются противоположно направленные потоки рассеяния Ф S 1 и Ф S 2, что уменьшает индуктивное сопротивление вторичной обмотки и увеличивает сварной ток. Минимальный сварочный ток соответствует наибольшему расстоянию между обмотками и максимальному потоку рассеяния.

Рис. 3.8. Трансформатор с увеличенным магнитным рассеянием и подвижной вторичной обмоткой

Сварочные генераторы являются электрическими машинами постоянного тока и в зависимости от конструктивных особенностей могут иметь падающие, жесткие, пологопадающие и комбинированные внешние характеристики. Наиболее распространены генераторы с падающими внешними характеристиками, работающие по одной из следующих трех схем:

с независимым возбуждением и размагничивающей последовательной обмоткой;

с намагничивающей параллельной и размагничивающей последовательной обмотками возбуждения;

с расщепленными полосами.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: