Проблемы моделирования и типы проектных моделей самолета

Понятие формализации проектирования включают описание объекта и процесса его проектирования с помощью графического языка, чисел, букв, кодов и других символов, то есть сочетание идеографической совокупности функций проектных решений и функции технологических, и др. Следовательно, для описания детализации конструкции, каждому уровню иерархии ставится степень соответствия знаков, набор символов и обозначений, а также проектно-технологических функций, с помощью которых осуществляется это описание. То есть структуру самолета, его форму, размеры можно описать, например с помощью функций или конечного числа таких символов, которые называются параметрами. Свойства же конструкции самолета или его подсистем (агрегатов, готовых изделий и т.п.) можно описать с помощью другого набора символов, называемого характеристиками, которые в свою очередь можно выразить через функцию (как полезное свойство, состояние или действие).

Декомпозиция (расчленение) системы на иерархические уровни облегчает решения отдельных задач, например, задачи подготовки производства, которая является производной от процесса проектирования самолета и базовой структуры процесса производства. Однако, здесь требуется учет всех существующих связей между расчлененными (иерархическими) уровнями, с целью упрощения и оптимизации процессов подготовки производства; проектирование средств технологического оснащения, технологических процессов на изготовление и др.

Рассмотрим характер связей для этапов разработки технического задания (ТЗ), разработки технического предложения, эскизного проекта, математической и электронной моделей (рис.1.3).

 

 

Здесь прямые связи являются выходной информацией – результатом проектирования (обозначены сплошными линиями) для верхнего уровня и входной информацией – для нижнего уровня. Обратные же связи – наоборот (обозначены пунктирными линиями). Для верхнего уровня прямые связи представляют собой искомые переменные – оптимизируемые параметры, для нижнего уровня, как бы, дисциплинирующие условия, что является основой для формулирования критериев и ограничений при решении задач проектирования данного условия. Так, например, прямые связи между уровнями разработки ТЗ и технического предположения – это переменные, характеризующие потребные летно-технические и другие характеристики, регламентируемые техническое задание на проектирование. Прямые связи между уровнем разработки технического предложения и уровнем разработки эскизного проекта отражают решения по проекту, которые необходимо принять, прежде чем приступить к эскизному проектированию. Они включают в себя численное, графическое, морфологическое и функциональное описание, подтверждающее возможность или уровень выполнения технического задания и т.д.

Поскольку проектирование традиционно ведется сверху вниз (то есть, начиная с облика самолета до деталей), то информация соответствующая обратным связям, носит характер прогноза или априорного моделирования.

Проектирование же на каждом уровне направленно на подтверждение заявленных на более высоком уровне характеристик. Прогнозный характер информации требует наличия итерационных циклов и подтверждения заявленных на более высоких уровнях характеристик. Это определяет второй важный аспект с точки зрения формализации процесса проектирования – это итерационный характер. Но итерационный характер проектирования с использованием САПР не совсем желателен, так как он ведет к увеличению сроков разработки проекта и его стоимости, поэтому заранее в базу данных САПР должны быть внесены различные альтернативные технические решения по функции самолета, то есть информационная база САПР должна быть начинена множеством комбинатов технических решений – комбинаторными файлами, с исчерпывающим информационным тезаурусом по конструкции самолета. Поэтому на этапе математического и электронного моделирования различных элементов конструкции самолета, необходимо учитывать принципы системного подхода, то есть выполнять декомпозицию конструкции, отличающейся высокой степенью детализации, с учетом в моделях конструктивных и технологических факторов и связей между ними, то есть математические и электронные модели при проектировании самолета должны подчиняться также принципам иерархичности построения.

Одной из важнейших электронных моделей при проектировании самолета является геометрическая модель. Важность ее определяется формированием облика проектируемого самолета, его внешними формами и размерами, что при расчетах определяет его летные свойства, что является своеобразным «ребром», соединяющим вершины множества, то есть проектом и реализацией проекта. Геометрическая модель описывает отношения между параметрами самолета, характеристиками его формы и размерами, что помогает проектировщику определить обводы, площади, объемы, поперечные сечения самолета и его многочисленных агрегатов и систем. Геометрическая модель является основной базой для производства расчетов: весовых характеристик, прочности, компоновки самолета и др., а также для графического отображения результатов проектирования и, как следствие, для разработки средств технологического оснащения, математических управляющих программ для станков с ЧПУ, технологических процессов и др. Здесь весовая модель, например, обеспечивает расчет общей массы самолета и ее составляющих по функции в соответствии с весовой сводкой, степень детализации которой определяется одним из этапов разработки проекта самолета. Также, на стадии математического и электронного моделирования рассчитывается и проектируется аэродинамическая модель, которая служит для расчета аэродинамических характеристик самолета в полетной и взлетно-посадочной конфигурациях. В ее основе заложены связи между параметрами формы и размерами самолета, а также связи между режимами полета и характером действующих на самолет сил моментов (то есть, их величиной и законами изменения). Следующая электронная модель – это модель силовой установки которая делает возможным расчет высотно-скоростных и расходных характеристик двигателей. Она основана на связях между геометрическими и газодинамическими параметрами двигателей разного типа и их тягой и расходом топлива на различных режимах полета и высотах полета (высотах оптимальных для данного типа самолета).

Весовая, аэродинамическая модели и модель силовой установки обеспечивают расчет априорных силовых факторов, действующих на модель самолета, что позволяет при проектировании самолета решать задачи по определению общих показателей маневренности, траектории полета, взлетно-посадочных характеристик, характеристик его устойчивости, управляемости и живучести, и др. При формировании в процессе электронного моделирования облика самолета важную роль играет модель компоновки и центровки, обеспечивающая взаимную пространственную увязку основных компонентов самолета с учетом удовлетворения противоречивых требований аэродинамики и прочности, устойчивости и управляемости, эксплуатационной и промышленной технологичности. Для оценки вариантов проектно-конструкторских решений применяются критерии функциональности и стоимости и другие технико-экономические показатели технического совершенства самолета. Для их расчета следует использовать структурно-функциональные (эффективные) модели, с использованием методологии функционально-стоимостной инженерии.



Список литературы

 

1. Вигдорчик С.А. Технологические основы проектирования и конструирования самолетов. – М.: Изд. МАИ, 2009.

2. Глаголев А.Н., Гольдинов М.Я., Григоренко С.М. Конструкция самолетов. – М.: Машиностроение, 2008.

3. Никифоров Т.Н., Котылев Г.В. Конструкция самолетных агрегатов. – М.: Машиностроение, 2007

4. Проектирование самолетов / Под ред. Егера С.М.. – М.: Машиностроение, 2006.

5. Шульженко М.Н. Конструкция самолетов. – М.: Машиностроение, 2007.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: