Механизм восприятия и передачи звуковой информации

Передача звука происходит следующим образом:

1. Звук достигает барабанной перепонки и вызывает ее колебания.

2. Посредством слуховых косточек эти колебания усиливаются и воздействуют на мембрану овального (круглого) окна.

3. Колебания мембраны овального окна сообщаются перелимфе нижней лестницы, а следовательно, и основной мембране.

4. Смещения основной мембраны передаются на волоски рецепторных клеток, которые при взаимодействии с покровной мембраной деформируются. Механическая деформация волосковых клеток изменяет ионную проницаемость их мембран, уменьшается величина мембранного потенциала (развивается деполяризация). Это приводит к возникновению генераторного потенциала. Чем сильнее раздражение, тем больше амплитуда генераторного потенциала, тем выше частота нервных импульсов.

5. Возникшие нервные импульсы распространяются по нейронам слуховой сенсорной системы: первые нейроны расположены в спиральном узле, вторые - в продолговатом мозге, третьи - в зрительных буграх промежуточного мозга, четвертые - в верхней части височной доли коры больших полушарий головного мозга, где происходит высший анализ воспринимаемых звуков.

Способность воспринимать звуки разной частоты основана на процессах, происходящих в улитке слухового аппарата. Звуки разной частоты вызывают колебания перелимфы и эндолимфы. Эти колебания приводят в движение строго определенные участки основной мембраны, а вместе с ней и соответствующие рецепторы - волосковые клетки. Так при высокой частоте звуков возбуждаются слуховые рецепторы, расположенные ближе к началу (основанию) улитки, а при низкой частоте - к концу улитки.

 

Электрические явления в улитке

При отведении электрических потенциалов от разных частей улитки обнаружено пять различных феноменов: два из них - мембранный потенциал слуховой рецепторной клетки и потенциал эндолимфы - не обусловлены действием звука; три электрических явления - микрофонный потенциал улитки, суммационный потенциал и потенциалы слухового нерва - возникают под влиянием звуковых раздражений. Если ввести в улитку электроды, соединить их с динамиком через усилитель и подействовать на ухо звуком, то динамик точно воспроизведет этот звук. Описываемое явление называют микрофонным эффектом улитки, а регистрируемый электрический потенциал назван кохлеарным микрофонным потенциалом. Доказано, что он генерируется на мембране волосковой клетки в результате деформации волосков. Частота микрофонных потенциалов соответствует частоте звуковых колебаний, а амплитуда потенциалов в определенных границах пропорциональна интенсивности звука.

В ответ на сильные звуки большой частоты (высокие тона) отмечают стойкий сдвиг исходной разности потенциалов. Это явление получило название суммационного потенциала. Различают положительный и отрицательный суммационные потенциалы. Их величины пропорциональны интенсивности звукового давления и силе прижатия волосков рецепторных клеток к покровной мембране.

Микрофонный и суммационный потенциалы рассматривают как суммарные рецепторные потенциалы волосковых клеток. Имеются указания, что отрицательный суммационный потенциал генерируется внутренними, а микрофонный и положительный суммационные потенциалы - наружными волосковыми клетками. И наконец, в результате возбуждения рецепторов происходит генерация импульсного сигнала в волокнах слухового нерва

Иннервация волосковых клеток спирального органа

Сигналы от волосковых клеток поступают в мозг по 32 000 афферентных нервных волокон, входящих в состав улитковой ветви VIII пары черепных нервов. Они являются дендритами ганглиозных нервных клеток спирального ганглия. Около* 90 % волокон идет от внутренних волосковых клеток и лишь 10% - от наружных. Сигналы от каждой внутренней волосковой клетки поступают в несколько волокон, в то время как сигналы от нескольких наружных волосковых клеток конвергируют на одном волокне. Помимо афферентных волокон, спиральный орган иннервируется эфферентными волокнами, идущими из ядер верхне-оливарного комплекса (оливо-кохлеарные волокна). При этом эфферентные волокна, приходящие к внутренним волосковым клеткам, оканчиваются не на самих этих клетках, а на афферентных волокнах. Считают, что они оказывают тормозное воздействие на передачу слухового сигнала, способствуя обострению частотного разрешения. Эфферентные волокна, приходящие к наружным волосковым клеткам, воздействуют на них непосредственно и, возможно, регулируют их длину и тем самым управляют чувствительностью как их самих, так и внутренних волосковых клеток.

Электрическая активность путей и центров слуховой системы

Даже в тишине по волокнам слухового нерва следуют спонтанные импульсы со сравнительно высокой частотой (до 100 в секунду). При звуковом раздражении частота импульсации в волокнах нарастает и остается повышенной в течение всего времени, пока действует звук. Степень учащения разрядов различна у разных волокон и обусловлена интенсивностью и частотой звукового воздействия. В центральных отделах слуховой системы много нейронов, возбуждение которых длится в течение всего времени действия звука. На низких уровнях слуховой системы сравнительно немного нейронов, отвечающих лишь на включение и выключение звука (нейроны on-, off- и on-off- типа). На высоких уровнях системы процент таких нейронов возрастает. В слуховой зоне коры большого мозга много нейронов, вызванные разряды которых длятся десятки секунд после прекращения звука.

На каждом из уровней слуховой системы с помощью макроэлектродов могут быть зарегистрированы характерные по форме вызванные потенциалы, отражающие синхронизированные реакции (ВПСП, ТПСП и импульсные разряды) больших групп нейронов и волокон.

 

 

Слуховые функции

Анализ частоты звука (высоты тона)

 

Звуковые колебания разной частоты вовлекают в колебательный процесс основную мембрану на всем ее протяжении неодинаково. Локализация амплитудного максимума бегущей волны на основной мембране зависит от частоты звука. Таким образом, в процесс возбуждения при действии звуков разной частоты вовлекаются разные рецепторные клетки спирального органа. В улитке сочетаются два типа кодирования, или механизма различения, высоты тонов: пространственный и временной. Пространственное кодирование основано на определенном расположении возбужденных рецепторов на основной мембране. Однако при действии низких и средних тонов, кроме пространственного, осуществляется и временное кодирование: информация передается по определенным волокнам слухового нерва в виде импульсов, частота следования которых повторяет частоту звуковых колебаний. О настройке отдельных нейронов на всех уровнях слуховой системы на определенную частоту звука свидетельствует наличие у каждого из них специфической частотно-пороговой характеристики - зависимости пороговой интенсивности звука, необходимой для возбуждения нейрона, от частоты звуковых колебаний. Для каждого нейрона существует оптимальная, или характеристическая, частота звука, на которую порог реакции нейрона минимален, а в обе стороны по диапазону частот от этого оптимума порог резко возрастает. При надпороговых звуках характеристическая частота дает и наибольшую частоту разрядов нейрона. Таким образом, каждый нейрон настроен на выделение из всей совокупности звуков лишь определенного, достаточно узкого участка частотного диапазона. Частотно-пороговые кривые разных клеток не совпадают, а в совокупности перекрывают весь частотный диапазон слышимых звуков, обеспечивая полноценное их восприятие.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: