Аддитивные квази-средние

Рассмотрим ещё один класс квази-средних. Назовём свойство   аддитивностью и найдём все квази-средние с данным свойством.

Теорема 6. Взвешенное среднее арифметическое и квази-среднее, заданное показательной функцией – единственные аддитивные квази-средние.

Доказательство. Аддитивность указанных квази-средних показывается простой проверкой. Для доказательства их единственности предполагаем, что равенство    имеет место, и выводим из него вид задающей квази-среднее функции . Переписываем соотношение

  или = . Получаем тождественные квази-средние, заданные функциями  и . В силу теоремы имеем  (*), где и – функции от t, 0, а также можем положить .

Далее рассуждая аналогично предыдущей теореме, приходим к функциональному уравнению , рассматривая которое, вновь различаем два случая:

1) при d=0 , и поэтому ;

2) при d 0 полагая , сведём уравнение к , и поэтому    и .

В первом случае   имеем среднее арифметическое. Во втором – квази-среднее, заданное показательной функцией .

И в заключении этой главы на основе доказанных теорем 5 и 6 простое

Следствие. Взвешенное среднее арифметическое – единственное однородное и одновременно аддитивное квази-среднее.

Глава 3. Квази-средние и выпуклые функции

Для классических средних существует множество неравенств, которые могут быть обобщены в различных направлениях. Одним из таких обобщений являются неравенства для квази-средних, которые мы и рассмотрим в этой главе. Как их частные случаи мы также получим основные неравенства для средних степенных (неравенство Коши о среднем арифметическом и среднем геометрическом; неравенства, характеризующие свойство монотонности средних степенных; неравенство Гюйгенса; неравенство Гёльдера ) и их аналоги.

Как в основе доказательств приведённых ранее теорем лежали функциональные уравнения, так и сейчас нам будет важно отдельно рассмотреть ряд положений, касающихся выпуклых функций.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: