Введение понятия функции

Для введения понятия функции используется конкретно-индуктивный путь, поэтому полезно использовать метод проблемного изложения, разобрать несколько задач с подчёркиванием существенных признаков понятия (одна переменная зависит от другой, однозначная зависимость). Примеры должны быть разнообразными по содержанию, несущественные признаки должны варьироваться (несущественным является способ задания функции: формула, график, таблица). Необходимо подобрать контрпример для разных способов задания функции, выделить критерий, по которому можно определить, является ли зависимость функциональной (при каждом способе задания).

Критерии:

Ø Если зависимость задана таблицей, то в первой строчке не должно быть одинаковых чисел.

Ø В случае, когда функция задана графически, то любая прямая, параллельная оси Оу, должна пересекать график не более чем в одной точке.

Ø Если функция задана аналитически, то нужно следить за единственностью значений соответствующих зависимостей, например, .

При введении понятия «функция» следует обратить внимание на переход от одной формы задания функции к другой. В школе, как правило, он осуществляется по схеме: аналитическая модель ® таблица ® график. Для введения конкретных функций лучше использовать схему: словесная модель ® таблица ® график ® аналитическая модель.

Очень важно, чтобы учащиеся понимали, что одна и та же функция может быть задана и формулой, и таблицей, и графиком, но не всякая (некоторые функции, заданные графически, не могут быть заданы формулой, например, кардиограммы).

При введении записи  необходимо, чтобы учащиеся понимали смысл буквы f, которая означает закон соответствия.

Способы исследования функций:

Содержание этой учебной задачи заключается в том, чтобы средствами, которыми владеют учащиеся в это время, устанавливать все свойства функции.

Выделяют три способа исследования функции: аналитический (исследование элементарными средствами и исследование с помощью производной), графический и комбинированный метод.

Результатом аналитического метода является построение графика функции. При исследовании используются уравнения и неравенства.

При графическом методе по точкам строится график, и с него считываются свойства.

Комбинированный метод используется в двух смыслах:

1) часть свойств обосновывается аналитически, а часть – графически;

2) сначала строится график по точкам, считываются свойства, а затем они доказывается без всякой опоры на график.

Необходимо уже в основной школе чётко разграничивать языки, на которых рассматриваются свойства функций: словесный, графический, аналитический.


Схема для чтения свойств функции :

Свойства функции Аналитически это означает Графически это означает
1. Область определения Переменная х в формуле  может принимать значения … Это множество абсцисс…
2. Область значений Переменная у в формуле  может принимать значения … Это множество ординат точек графика …
3. Нули функции  при х =…(корни уравнения) Это абсциссы точек пересечения графика с осью Ох
4. Функция принимает значения: а) больше а б) меньше а     а) , если х... б) , если х... а)График расположен выше прямой у = а при х =... б)График расположен ниже прямой у = а при х =...
5. Функция принимает значения, равные значениям функции , если х =... График функции  пересекает график функции , при х =...
6.Функция принимает значения а) больше значений функции б)меньше значений функции     а) , если х... б) , если х...   а)График функции  расположен выше графика функции , при х =... б)График функции , расположен ниже графика функции , при х =...
7. а) функция возрастает на множестве М б)функция убывает на множестве М Пусть х 1, х 2Î М, а)если , то б)если , то а)с увеличением абсцисс точек на множестве М график функции «поднимается» вверх. б)с увеличением абсцисс точек на множестве М график функции «опускается» вниз.  

Схема изучения конкретных функций:

1. Рассмотреть конкретные ситуации (или задачи), приводящие к данной функции.

На этом этапе изучения учащиеся должны убедится в целесообразности изучения данной функции, исходя из соображений практики или необходимости дальнейшего развития теории.

2. Сформулировать определение данной функции, дать запись функции формулой, провести исследование входящих в эту формулу параметров.

На этом этапе изучения учащиеся получают чёткое представление о данной функции, о её характеристических свойствах, выделяющих данную функцию из множества других.

3. Ознакомить учащихся с графиком данной функции.

На этом этапе учащиеся учатся изображать изучаемую функцию графически, отличать по графику данную функцию от других, заданных графиком функций, устанавливать влияние параметров на характер графического изображения функции.

4. Исследовать функцию на основные свойства: области определения и значений, возрастание и убывание, промежутки знакопостоянства, нули, экстремумы, чётность или нечётность (или отсутствие этих свойств), периодичность, ограниченность, непрерывность.

5. Использовать изученные свойства функций при решении различных задач, в частности уравнений и неравенств.

Этот этап является этапом закрепления основных понятий и теоретических положений, связанных с изучаемой функцией, а также этапом формирования соответствующих умений и навыков.

Эта методическая схема является своеобразным планом – программой для изучения любой функции, но нужно иметь в виду, что содержание материала и практика обучения вносят в неё соответствующие коррективы.

Итак, при изучении функциональной линии необходимо в 5-6 классе проводить функциональную пропедевтику. Понятие «функция» лучше вводить конкретно-индуктивным путём, при использовании генетического подхода, а исследование конкретных функций проводить комбинированным методом.

А сейчас перейдём к рассмотрению конкретного учебного комплекта по алгебре.

§ 2. Методические рекомендации по изучению функциональной линии по учебникам «Математика. Арифметика. Алгебра. Анализ данных. 7 класс», «Математика. Алгебра. Функции. Анализ данных» для 8 и 9 классов под редакцией Г.В. Дорофеева.

2.1. Характеристика комплекта учебников под редакцией Г.В. Дорофеева.

Учебники [36], [35], [34] продолжают линию учебных комплектов [37], [32] и развивают идеи, которые заложены в общей концепции курса математики. Переход к учебникам [36], [35], [34] можно осуществить, как после учебников [37], [33], так и после других учебников по математике для 5–6 классов, так как содержание алгебраического и арифметического блоков совпадают с содержанием других учебников для 7–9 классов.

В учебниках математики [36], [35], [34] теоретический материал изложен достаточно интересно, в них содержится много фактов из истории математики, что делает его ещё более интересным. В данных учебниках содержится много сведений, которые приведены без доказательств, но есть и много задач на доказательство.

Что касается системы задач, то в данном учебном комплекте он разделен на две части по уровню сложности. В первой части (её обозначают буквой «А») помещены упражнения, которые требуют от учеников лишь умений решать по алгоритму, а во второй части («В») даны упражнения, при решении которых требуется умение мыслить и анализировать. В основном в каждой группе «В» (в конце) содержится задача-исследование. Хотелось бы отметить, что в учебниках [36], [35], [34] формулировки упражнений интересны, разнообразны и в них прослеживается практическая направленность и связь с другими науками (например, физикой и геометрией). Много внимания уделено вычислительной культуре учащихся, обеспечена уровневая дифференциация в обучении.

Учебник [36] является непосредственным продолжением учебников [37] и [33]. В нём получают дальнейшее развитие арифметическая, алгебраическая и вероятностно-статистическая линии курса. Учебник [35] продолжает линию учебных комплектов [37], [33] [36]. В данном учебнике уделено много внимания формированию вычислительной культуры учащихся, обеспечена уровневая дифференциация в обучении алгебре. Учебник содержит большое количество разнообразных упражнений и дополнительный материал в рубрике «Для тех, кому интересно». Дальнейшее развитие получает вероятностно-статистическая линия курса. Учебник [34] завершает непрерывный курс математики для 5–9 классов общеобразовательных школ. В учебниках, содержание которых полностью соответствует современным образовательным стандартам, учтены результаты опыта преподавания математики последних десятилетий, а также отражены современные методические и педагогические тенденции – усилено внимание к формированию вычислительной культуры в её современном понимании, а также к обучению логическим приёмам решения задач. Включен новый для российской школы материал – элементы статистики и теории вероятностей.

В данном учебном комплекте предусмотрена роль и место алгебраической пропедевтики. Постоянно используется буквенная символика. Преобразование буквенных выражений, решение задач с помощью уравнений отнесены к 7 классу, где возрастное развитие учащихся в большей степени соответствует деятельности по выполнению формальных операций.

Ещё одной особенностью курса является то, что часть материала (функция, тождество, равносильность уравнений) авторы переносят из 7 класса в 8, 9 классы. В старших классах основной школы уровень абстрактного мышления гораздо выше, чем в 7 классе, именно поэтому перенос оправдан.

В курсе начинают изучать новую содержательную линию «Анализ данных», что продиктовано самой жизнью, так как вероятностный характер многих явлений действительности во многом определяет поведение человека. Поэтому школьный курс математики должен формировать соответствующие практические ориентиры, вооружать учащихся общей вероятностной интуицией, конкретными способами оценки данных.


Методическими особенностями учебного комплекта являются:

Ø обеспечение уровневой дифференциации;

Ø содержание материала организовано так, что происходит неоднократное возвращение ко всем принципиальным вопросам, причём на каждом следующем этапе учащиеся поднимаются на более высокий уровень;

Ø происходит опора на наглядно-образное мышление.

Итак, можно сделать вывод, что данный комплект отличается усиленным вниманием к арифметике, к формированию вычислительной культуры в её современном понимании: это прикидка и оценка результатов действий, проверка их на правдоподобие. Особое внимание уделяется обучению арифметическим и логическим приёмам решения текстовых задач. Каждая глава данного учебного комплекта содержит пункты: «Для тех, кому интересно», «Вопросы для повторения», «Задания для самопроверки».

2.2. Методические рекомендации по изучению функциональной линии в 7 классе.

Первоначальное знакомство с понятием функции происходит в 8 классе. Однако уже в 7 классе авторы учебника рассматривают такие функции, как линейная, степенные функции вида у = х 2, у = х 3, функция , их графики (вводят названия этих графиков).

Данные выражения они называют зависимостью или связью абсциссы и ординаты точки (понятия абсциссы и ординаты даются перед рассмотрением данных функций). Также приведены некоторые свойства графиков функций (симметричность, расположение параболы относительно оси абсцисс, касание графика оси абсцисс). Даются понятия ветвей и вершины параболы. Эти функции рассмотрены в главе «Координаты и графики».

Таким образом, можно сделать вывод, что в данном учебнике роль функции ослаблена, т.к. в некоторых учебниках понятие функции вводится в 7 классе, и рассматриваются некоторые частные виды функций (линейная, обратной пропорциональности и т.д.). Например, в учебниках [10], [12] в 7 классе рассмотрена линейная функция.

2.3. Методические рекомендации по изучению функциональной линии в 8 классе.

В 8 классе учебника [35] функциональной линии посвящена одна глава «Функции».

Здесь рассматриваются следующие пункты:

1. Чтение графиков.

2. Что такое функция.

3. График функции.

4. Свойства функций.

5. Линейная функция.

6. Функция  и её график.

Глава посвящена введению понятия функции, формированию представлений о свойствах функций, а также изучению линейной функции и функции . Изложение вопроса о функциях строится на базе опыта, приобретённого учащимися при изучении различных зависимостей между величинами, и большого запаса графиков, знакомых восьмиклассникам к этому моменту.

При изучении главы акцент делается не столько на определение понятия функции, сколько на введение нового языка, на овладение учащимися новой терминологией и символикой. Необходимо отметить, что новый язык постоянно сопоставляется с уже освоенным, то есть внимание обращается на умение переформулировать задачу или вопрос с языка функций на язык графиков или уравнений и наоборот. Так, в ходе изучения материала школьники учатся понимать эквивалентность таких формулировок, как: «найдите нули функций », «определите, в каких точках график функции  пересекает ось х», «найдите корни уравнения ».

При изложении материала много внимания уделяется графикам реальных зависимостей, важное место занимают практические работы, вопросы и задачи прикладного и практического характера. Учащиеся получают некоторые представления о скорости роста или убывания функции. Особенностью изложения материала является его прикладная направленность. При изучении линейной функции явно формулируется мысль о том, что с помощью этой функции описываются процессы, протекающие с постоянной скоростью, вводится идея аппроксимации. В ходе решения задач учащиеся моделируют с помощью изучаемых функций самые разнообразные реальные ситуации.

Примерное распределение учебного материала:

(Всего на тему отводится 14 часов)

Номер и название пункта Число уроков
5.1. Чтение графиков 2
5.2. Что такое функция 2
5.3.График функции 2
5.4. Свойства функций 2
5.5. Линейная функция 3
5.6. Функция  и её график 2
Зачёт 1

В первом пункте «Чтение графиков» рассматривается три примера.

Пример 1: Родители измеряли рост сына каждые два года от 2 до 12 лет. Получились такие результаты:

Возраст (годы) 2 4 6 8 10 12
Рост (см) 82 102 108 120 126 132

Далее говорится о том, что родители построили график роста сына и объясняется, как нужно построить этот график. Затем по графику определяется, когда мальчик рос быстрее, а когда медленнее.

Этот пример позволяет повторить известный из курса 7 класса материал (глава 5, пункт 5.3 [3]) и продемонстрировать учащимся, как на графике отражается изменение скорости роста. Разбирая этот пример, следует обратить внимание на разные масштабы по осям. Вопрос о скорости роста в разные периоды времени, обсуждаемый в тексте, следует разобрать детально, так как к этому примеру учащиеся обратятся вновь при изучении линейной функции.

Два других примера демонстрируют возможность представления на одном чертеже сразу нескольких графиков: изменения веса двух детей, бега трёх спортсменов. Рассматривая эти графики, школьники учатся сопоставлять различные характеристики изображаемых процессов и извлекать самую разнообразную информацию, причём не только количественную.

При изучении этого пункта надо дать учащимся возможность активно поработать с графиками, так как для них график является опорным образом при усвоении понятий (таких, например, как свойства функций). В ходе анализа графиков разобрать все свойства функций, которые будут изучаться в следующих пунктах.

Система упражнений.

Большая часть упражнений – это задания, в которых по известным графикам нужно ответить на серию вопросов. Также здесь приведены упражнения, где по данной таблице требуется построить график и проанализировать его (например, строится график температуры, а проанализировать необходимо изменение температуры в течение месяца). Кроме того, есть задания, в которых описана конкретная ситуация и дано несколько графиков, ученикам необходимо выбрать, на каком из графиков описана эта ситуация.

При выполнении отдельных упражнений (по выбору учителя) полезно предлагать учащимся самим придумывать вопросы по графикам или же рассказывать, какую дополнительную информацию можно извлечь из этого графика.

Комментарии к некоторым упражнениям:


№ 691. Турист в течение 30 мин дошёл от лагеря до озера, расположенного в 2 км от лагеря, и, пробыв там 40 мин, вернулся обратно. На всю прогулку он затратил полтора часа. На каком из графиков (рис. 1) изображена описанная ситуация? (На вертикальной оси отмечено расстояние туриста от лагеря.)

Рис. 1

Это упражнение нужно обязательно разобрать с учениками, так как именно при решении таких упражнений у учащиеся формируется умение сопоставлять функцию и её график.

№ 693. Олег и Пётр соревновались на дистанции 200 м в 50-метровом бассейне. Графики их заплывов показаны на рисунке 2. По горизонтальной оси отложено время, а по вертикальной – соответствующее расстояние пловца от старта.

1) Используя графики, ответьте на вопросы:

а) Сколько времени затратил каждый спортсмен на первые 50 м; на всю дистанцию?                     Рис. 2

б) Кто выиграл соревнование? На сколько секунд он обогнал соперника?

в) На сколько метров отстал проигравший от победителя к моменту финиша?

2) Прокомментируйте подробно весь ход соревнований.

В этом упражнении можно посоветовать учащимся перед ответом на поставленные вопросы рассмотреть графики. Целесообразно спросить их, что обозначает каждое звено изображённых на рисунке ломаных (отрезок ломаной описывает движение спортсмена на 50-метровке). Можно предложить аккуратно карандашом обозначить вершины ломаных буквами, что поможет не запутаться при ответе на вопросы.

Дополнительно, например, можно спросить, за сколько метров от финиша Пётр обогнал Олега; за сколько секунд каждый спортсмен проплыл половину дистанции; на сколько секунд быстрее Олег проплыл первую 50-метровку и др. Полезно предложить учащимся самим придумать вопросы по графику.

Выполнение задания 2 можно обыграть в форме соревнования комментаторов спортивного состязания.

№ 694. Используя графики, изображённые на рис. 2, постройте в одной системе координат графики движения этих же спортсменов, отложив по горизонтальной оси время движения, а по вертикальной – расстояние, которое проплыл спортсмен с начала заплыва.

1) Определите по графику:

а) среднюю скорость движения каждого спортсмена на первой 100-метровке;

б) среднюю скорость движения каждого спортсмена на всей дистанции.

2) Объясните, что, с точки зрения содержания задач, означают точки пересечения графиков на рис. 2 и на вашем рисунке.

Здесь нужно посоветовать учащимся, что прежде чем строить новый график, целесообразно, используя график на рис. 2, составить таблицу значений новой зависимости.

Во втором пункте «Что такое функция» вводятся понятие функции, а также некоторые связанные с ним понятия: зависимая и независимая переменные, аргумент (независимую переменную называют аргументом), область определения функции (все значения, которые может принимать аргумент, образуют область определения функции). С этого момента начинает использоваться функциональная символика . Рассматриваются способы задания функции – графически, аналитически, таблично.

Функция трактуется как зависимая переменная, значения которой однозначно определяются значениями другой переменной (переменную у называют функцией переменной х, если каждому значению х из некоторого числового множества соответствует одно определённое значение переменной у). Таким образом, можно сделать вывод, что для введения понятия функции используется генетический подход.

Цель изучения данного пункта – это ознакомление учащихся с различными ситуациями, в которых употребляется термин «функция», введение нового словаря и обучение его применению. В тексте специально подчеркивается многозначность слова «функция» и широкий диапазон его применения в математике – для обозначения и зависимой переменной, и самой зависимости, и правила, по которому устанавливается зависимость между переменными.

Особенностью принятого подхода является его явный прикладной характер (само понятие функции вводится и иллюстрируется на основе зависимостей, взятых из реальной жизни). Обращается внимание на некоторые различия в применении символики в математике и в физике, обсуждается вопрос о сужении области определения функции в практических задачах – физических, геометрических и т.д.

Система упражнений.

В данном пункте содержатся упражнения на задание формулами функций, описывающих самые разнообразные реальные ситуации (это не новая для учащихся работа, они уже много раз задавали зависимости с помощью формул). В ходе выполнения указанной группы упражнений школьники овладевают новыми понятиями и осваивают введённую терминологию. Часть упражнений этого пункта направлены на усвоение функциональной символики (при выполнении некоторых из них учащимся придётся переводить на символический язык содержательные утверждения о функциях, то есть учится различными способами выражать одну и ту же мысль). Кроме того, есть задания, где по данному значению аргумента необходимо найти значение функции и, наоборот, по значению функции найти значение аргумента с использованием формулы и графика.

Комментарии к некоторым упражнениям:

№ 700. Число диагоналей p выпуклого многоугольника является функцией числа его сторон n. Задайте эту функцию формулой. Какова её область определения? Заполните таблицу, в которой даны некоторые значения аргумента n и функции p:

p 5   10  
n   14   54

Проинтерпретируйте полученные результаты на геометрическом языке.

В этом задании от учащихся требуется применить некоторые знания из геометрии.

Рассмотрим, как составляется эта функция.

Каждая из п вершин соединяется диагональю со всеми остальными вершинами многоугольника, кроме двух соседних, т.е. с (п – 3) вершинами. Умножив п на , получим удвоенное число диагоналей многоугольника (так как каждая диагональ при таком способе подсчета посчитана дважды). Чтобы получить число диагоналей многоугольника, надо это произведение разделить на 2. Получаем формулу, выражающую число диагоналей многоугольника через число его сторон: .

Область определения функции: п – натуральное число, п ≥ 4.

Последнее задание требует от учащихся умения объяснять числовой результат. Комментарии могут быть разными, например: «Если в многоугольнике 14 диагоналей, то у него семь сторон», «В семиугольнике 14 диагоналей» и так далее.

№ 710. Дана функция  Найдите значение этой функции для значения аргумента, равного –3; –2;0; 0,1; 5.

Основная трудность для учащихся – определить, в какую формулу подставлять заданные значения аргумента. Поэтому полезно сначала предложить ученикам назвать несколько значений х, для которых значение функции вычисляется по формуле , и найти значение функции для кого-нибудь из названных значений х. Затем пусть учащиеся назовут несколько значений х, для которых значение функции равно 5.

Упражнение следует выполнять подробно – для каждого из данных чисел определить, к какому из промежутков оно принадлежит и по какой формуле надо вести вычисление (  следовательно,  и т.д.).

№ 711. Дана функция  Найдите значение этой функции при значении аргумента, равном:

а) ; ; ;

б) ; ; .

Это задание аналогично заданию № 710, но в вычислительном отношении труднее. Полезно ввести подробную запись:

б) = ;

, ;

, .

№ 717. Пусть , . Найдите:

а) ;

в) .

Это более сложное задние на понимание символических записей, на их раскодирование. В пункте в) учащиеся фактически имеют дело со сложной функцией. Однако здесь, конечно, это понятие не вводится.

Чтобы понять смысл такой записи, как , надо просто внимательно её прочитать, а именно: значение функции f при значении аргумента, равном . Теперь ясно, как найти значение данного выражения: , .

В результате изучения пункта учащиеся должны понимать и правильно употреблять функциональную терминологию (функция, аргумент, область определения функции), записывать функциональные соотношения с использованием символического языка (). В несложных случаях выражать формулой зависимость между величинами, находить по формуле значение функции, соответствующее данному аргументу, и аргумент, которому соответствует данное значение функции.

В третьем пункте «График функции» вначале введены новые обозначения для числовых промежутков, которые уже рассматривались в 7 классе и задавались с помощью неравенств: отрезок, интервал, луч (замкнутый и открытый). Таким образом, с этого момента учащиеся могут пользоваться любым из обозначений. Например, множество чисел, больших 2, можно обозначать двумя способами: х > 2и (2; +∞).

После этого вводится собственно материал, связанный с графиками функций. Рассматриваемые в пункте две задачи являются центральными на данном этапе изучения материала. Первая – это нахождение с помощью графика значения функции, соответствующего заданному значению аргумента, а также значений аргумента, которым соответствует данное значение функции. Вторая – это построение графиков функций по точкам.

Пример, рассматриваемый в заключении, помогает разъяснить, что не всякое уравнение или график задают функцию.

Система упражнений.

В этом пункте содержатся упражнения на определение принадлежности точки графику, на сопоставление графиков и функциональных зависимостей, на определение точек пересечения графика с осями координат, на доказательство (например: докажите, что график функции целиком расположен в верхней полуплоскости). Большое внимание в упражнениях уделяется также построению графиков функций, заданных самыми разными формулами, по точкам, с помощью составления таблиц значений.

Комментарии к некоторым упражнениям:

№ 721. а) На рисунке 3 изображён график некоторой функции. Составьте по графику таблицу значений функции на промежутке [–1; 2] с шагом . Воспроизведите этот график в тетради.

     
 

б) Функция задана графиком (рис. 4). Составьте таблицу значений функции на промежутке [–1; 5] с шагом 0,5. воспроизведите этот график в тетради.

                Рис. 3                                           Рис. 4

При выполнении таких упражнений изменяется форма задания функции без изменения способа задания. Оно полезно для формирования умения читать и строить график функции. При выполнении этого упражнения, для предупреждения ошибок, следует обратить внимание учащихся на масштаб по оси х и по оси у. Следует также заметить, что при построении графика в тетради можно взять другой масштаб, например, увеличить график, приняв за единицу 4 клетки.

№ 724. Составьте таблицу значений функции и постройте её график:

а) , где ;

б) , где .

Квадратичная функция еще не изучалась. Поэтому, чтобы аккуратно построить график, надо взять достаточно много точек из данного промежутка, например, рассматривать значения х с шагом 0,1 (или 0,2). Для облегчения работы можно воспользоваться калькулятором. Было бы хорошо, если бы работа выполнялась на миллиметровой бумаге.

Прежде чем составить таблицу значений функции, полезно обратить внимание на то, что отрезок  и  симметричен, поэтому составление таблицы может быть сокращено. Если сами учащиеся не заметят этой особенности формулы, можно навести их на эту мысль.

№ 738. На рис. 5 изображены графики функций , ,  и . Для каждого графика укажите соответствующую формулу.





Рис. 5

Чтобы соотнести график с соответствующей ему функцией, нужно использовать разные признаки. Так, график I целиком расположен ниже оси х. Это означает, что при всех значениях аргумента функция принимает отрицательные значения. Значит, этому графику может соответствовать одна из формул  или  (выражение, стоящие в правых частях, принимают отрицательные значения при всех значениях х). Чтобы выбрать из них нужную, вычислим ординату точки пересечения соответствующего формуле графика с осью у. Получим, что график функции  проходит через точку (0; –1). Значит, графику I соответствует именно эта формула. Графику II соответствует формула , графику III — формула  и графику IV – формула, .

В результате изучения данного пункта школьники учатся описывать графическую ситуацию по-разному, используя геометрический, алгебраический, функциональный языки. Например: «функция у = f(x) принимает значение, равное 0, при х = – 1 и х = 2», «график функции у = f(x) пересекает ось х в точках с абсциссами, равными –1 и 2», «уравнение f(x) = 0 имеет корни –1 и 2». То есть, учащиеся должны понимать эквивалентность соответствующих формулировок и свободно переходить от одной из них к другой.

В следующем пункте «Свойства функций» рассмотрены такие свойства функции:

1) область определения;

2) наибольшее и наименьшее значение функции;

3) нули функции;

4) промежутки знакопостоянства;

5) промежутки возрастания и убывания функции.

Цель данного пункта – это показать наглядно с помощью графиков смысл вводимых понятий. Формализация свойств функций отнесена к старшим классам. Здесь же важно, чтобы учащиеся правильно употребляли новые термины, понимали, как указанные свойства отражаются на графике, и умели по графику отвечать на вопросы, касающиеся свойств функций.

Заметим, что усвоение свойств функций и, как следствие, выполнение заданий на установление свойств функции по ее графику, традиционно вызывает трудности у учащихся. Наиболее часто ученики путают промежутки возрастания или убывания с промежутками, на которых функция принимает положительные или отрицательные значения. Параболу, ветви которой направлены вверх (вниз), многие считают графиком возрастающей (убывающей) функции. Для предупреждения подобных ошибок необходимо, чтобы свойства функций воспринимались учащимися осмысленно, а не формально. Этому может помочь обращение к содержательным графикам, например, к графику температуры. Учащимся стоит разъяснить, что как по графику температуры легко выяснить нужную информацию, так и график любой функции наглядно отражает все её свойства. Тот большой опыт работы с графиками реальных зависимостей, который приобрели учащиеся к данному моменту, поможет им перекинуть мостик от содержательных задач, связанных с графиками, к графикам произвольных функций.

Система упражнений.

Здесь содержаться упражнения, в которых по графику функции необходимо ответить на вопросы, касающиеся свойств функции, на сопоставление графиков и функциональных зависимостей; упражнения, в которых по известным свойствам функции необходимо задать формулу этой функции; упражнения на нахождение нулей функции (в ходе выполнения которых естественным образом повторяется материал, связанный с решением уравнений – линейных, квадратных, уравнений высших степеней, уравнений, решаемых на основе равенства нулю произведения). Кроме того, есть упражнения на построение графиков функций по известным её нулям (при решении таких упражнений повторяются графики зависимостей, изучавшихся в 7 классе).

Комментарии к некоторым упражнениям:

№ 740. На рисунке 6 изображён график функции , областью определения которой является отрезок [–2; 2]. Используя график, ответьте на вопросы:

1) Есть ли у функции наибольшее или наименьшее значение, и если есть, то чему оно равно? При каком значении аргумента функция принимает это значение?

2) Укажите нули функции.

3) Укажите промежутки, на которых функция принимает положительные значения; отрицательные значения.

Укажите промежутки, на которых функция возрастает; убывает.                                                       Рис. 6

№ 741. На рисунке 7 изображены графики функций, определённых на множестве всех чисел. Какие свойства каждой из функций можно выяснить с помощью её графика?


Рис. 7

Учащиеся могут ошибочно подумать, что функция, график которой изображен на рис. 7 а), имеет наибольшее и наименьшее значения. В этом случае можно предложить им найти по графику какое-нибудь значение функции, большее 4 и меньшее –2. В отличие от функции на рис. 7 а), функция, график которой изображен на рис. 7 б), имеет наименьшее значение, оно равно –3.

При выполнении этого упражнения можно предложить учащимся посоревноваться: кто из них сможет указать больше свойств.

№ 743. Числа –3; 5; 0,5 являются нулями функции . Убедитесь в справедливости этого утверждения. Сформулируйте этот факт другими способами, используя слова «график», «значение функции», «уравнение».

Цель упражнения – в обучении переводу с одного языка на другой, умению выразить одно и то же утверждение разными способами. Убедиться в справедливости утверждения можно, подставив данные числа в формулу. Эквивалентные формулировки могут быть, например, такими: «график функции f(x) пересекает ось х в точках (–3; 0), (5; 0), (0,5; 0)», или «функция принимает значение, равное 0, при х, равном –3; 5; 0,5», или «числа –3; 5; 0,5 являются корнями уравнения ».

№ 746. Начертите график какой-нибудь функции, нулями которой являются числа:

а) –3,5; 0; 4;

б) –5; –1; 2,5; 4,5.

Можно выполнять это задание парами – соседи по парте обменяются своими графиками, и каждый из них проконтролирует, правильно ли ответил на вопрос его напарник. Дополнить упражнение можно заданием: перечислить все свойства функции, которые можно выяснить по предложенному графику.

№ 752. График какой функции изображён на рисунке 8?

,

,

,                                         Рис. 8

.

Если использовать нули функций, то можно только отбросить функцию . Для остальных трёх нужно найти точку пересечения их графиков с осью у.

Работа сократится, если заранее заметить, что при подстановке нуля вместо х во вторую формулу получается отрицательное число и, значит, ордината точки пересечения соответствующего графика с осью у меньше нуля, а на предложенном графике она больше нуля. Остается выбрать из двух оставшихся функций h (xр (х).

График функции h (x)пересекает ось у в точке (0; 14), а р (х) в точке (0; 7). Значит, на рисунке изображен график функции h (х).

В пятом пункте «Линейная функция» дано понятие линейной функции (функция, которую можно задать формулой вида y = kx + l, где k и l – некоторые числа, называется линейной) и её графика (графиком линейной функции является прямая).

Линейная функция – это первая конкретная функция, с которой знакомятся учащиеся. Так как учащиеся уже умеют строить график зависимости, заданной формулой у = kx + l (глава 4, пункты 4.1 и 4.2), то этот график служит опорой при введении всех понятий и свойств.

В ходе изучения данного пункта рассматривается большое число примеров реальных процессов и ситуаций, описываемых линейной функцией (в том числе и прямой пропорциональностью), поэтому учащиеся должны прийти к пониманию того, что величины разной природы могут быть связаны между собой зависимостью одного и того же вида. Это важно при формировании представлений о математическом моделировании, а также о практической значимости математических знаний.

Свойства линейной функции вводятся в пункте на основе конкретных графиков (расположение графика в координатных плоскостях, промежутки возрастания и убывания линейной функции). Учащиеся знакомятся еще с одним важным свойством линейной функции – описывать процессы, протекающие с постоянной скоростью.

Новой для учащихся является идея линейной аппроксимации, которая позволяет связать функциональный материал с вопросами статистики. На конкретных примерах, с опорой на графики, учащиеся знакомятся с зависимостями, которые не являются линейными, но приближенно могут быть заданы линейными функциями, что позволяет делать определенные прогнозы, получать приближенную числовую информацию.

Этот материал не является обязательным для усвоения всеми учащимися (не входит в обязательные результаты обучения) и в классах с невысокой математической подготовкой может быть опущен.

Система упражнений.

Через систему упражнений учащиеся строят график линейной функции, определяют её свойства и продолжают вырабатывать навык построения графиков кусочно-заданных функций. При этом они знакомятся с новой для них ситуацией, когда график имеет разрывы.

Комментарии к некоторым упражнениям:

№ 763. Андрей планирует поработать во время летних каникул, и у него есть две возможности. На работе А он будет получать 20 р. в день. На работе В он в первый день получит 10 р., а затем ежедневно будет получать 20 р. Какой вариант выгоднее? Составьте формулу зависимости полученной суммы денег у от числа рабочих дней х для вариантов А и В. В одной системе координат постройте прямые, которым принадлежат точки графика каждой из функций, и отметьте эти точки для . Существует ли значения х, при которых значения у равны?

Для варианта А формула очевидна. При составлении формулы для варианта В учащиеся могут ошибиться и предложить формулу . В этом случае, чтобы увидеть характер зависимости между у и х, можно составить таблицу, в которой будут записаны суммы, получаемые за каждый из нескольких первых дней работы.

День 1 2 3 4 х
Заработок (руб.) 10 10+20   … 10+20(х –1)

В результате получаем формулу у = 20 х – 10.

Прежде чем строить прямые, целесообразно обсудить, какой масштаб следует выбрать, чтобы рисунок был понятным и аккуратным. По оси х удобно принять две клетки за единицу (один день), а по оси у – две клетки за 20 единиц (20 руб.).

Ответ на последний вопрос задачи отрицательный. Полезно обратить внимание учащихся на то, что его можно получить и, не прибегая к построению графиков. Уже из полученных формул видно, что прямые параллельны, так как имеют одинаковые угловые коэффициенты, поэтому ни при каком значении х, значения функций не будут равны.

№ 776. Самолёт начал снижение на высоте 8500 м. На графике (рис. 9) показано изменение его высоты над землёй в первые 20 мин снижения. Перечертите рисунок в тетрадь и подберите прямую, вокруг которой укладываются эти точки. Определите, сколько примерно минут длилось снижение самолёта и какова его средняя скорость снижения (в м/мин).                       Рис. 9

Перечерчивание графиков в тетрадь чрезвычайно полезно для совершенствования навыков работы с координатной плоскостью. Прямые, которые проведут учащиеся, будут разными, поэтому и ответы могут несколько различаться, однако вряд ли расхождение будет существенным. Время снижения самолета будет колебаться от 28 мин до 30 мин. Для нахождения средней скорости снижения нужно 8500 м разделить на полученное время снижения. Сильным учащимся можно предложить в качестве индивидуального задания записать уравнение построенной ими прямой.

В результате изучения материала учащиеся должны уметь строить график линейной функции, определять, возрастающей или убывающей она является, находить с помощью графика промежутки знакопостоянства. В несложных случаях они должны уметь моделировать реальную ситуацию, описываемую линейной функцией (записывать соответствующую формулу, строить график этой зависимости, учитывая особенности области ее определения), интерпретировать графики реальных процессов, состоящие из отрезков, в том числе определять, на каком участке процесс протекал быстрее или медленнее.

В последнем пункте «Функция », как и во всех предыдущих пунктах главы, изложение материала начинается с анализа примеров реальных зависимостей. Учащиеся рассматривают зависимость времени движения пешехода от его скорости, длины стороны прямоугольника заданной площади от длины другой его стороны, количества товара, которое можно купить на определенную сумму денег, от цены этого товара. Обобщая эти примеры, приходят к определению функции  (называемой обратной пропорциональностью).

Все свойства и график функции в учебнике рассматриваются на примере конкретных функций (). По точкам строится график данной функции и вводится его название (гипербола). Из свойств выделяют только область определения, промежутки убывания и возрастания функции и делается замечание, что график данной функции не пересекает координатные оси.

Исследование проводится подробно для первого случая, когда k > 0, а для второго случая (k < 0) приведены только конечные выводы и результаты.

Традиционно построение графика обратной пропорциональности вызывает у учащихся трудности. Многие строят его небрежно, не соблюдая симметрии ветвей, ветви бывают очень короткие, очень часто в работах учащихся одна из ветвей гиперболы сначала приближается, например, к оси х, а затем удаляется от нее. Для предупреждения подобных ошибок очень важно проанализировать особенности графика, обратив внимание учащихся на то, что график состоит из двух ветвей, симметричных друг другу относительно начала координат. Каждая ветвь гиперболы по мере удаления от начала координат становится все ближе и ближе к осям, но не пересекает их. Бесконечное приближение ветвей к осям координат можно проиллюстрировать в ходе небольшого числового опыта: например, подставить в формулу вместо х несколько достаточно больших чисел в порядке их возрастания и понаблюдать, как изменяется при этом значение у. Такое мини-исследование проводится и в тексте учебника.

Система упражнений.

При выполнении упражнений повторяется весь материал, изученный в главе, – свойства функций, функциональная символика, график линейной функции.


Комментарии к некоторым упражнениям:

№ 785. Графиком какой из функций , ,  является гипербола? Постройте эту гиперболу.

Учащиеся должны объяснить свой ответ, например, так: функции  и  являются линейными (можно попросить обосновать это утверждение), их графики – прямые. Функция  – это функция вида  при k = 3, графикомтакой функции является гипербола.

№ 792. Найдите координаты какой-нибудь точки, принадлежащей графику функции  и находящийся от оси х на расстоянии, меньшем, чем 0,1; 0,01.

Это задание необходимо проверить на следующем уроке.

Решение.Точки, находящиеся от оси х на расстоянии, равном 0,1, лежат на прямых. у = 0,1 и у = –0,1. Изобразив схематически график функции  и прямые у = 0,1и у = – 0,1, получим, что первая прямая пересечет правую ветвь гиперболы в некоторой точке А, а вторая пересечет левую ветвь в точке В. Они будут находиться на расстоянии 0,1 от оси х. Все точки, лежащие на гиперболе правее точки А, будут ближе к оси х, чем точка А, и, значит, на расстоянии, меньшем, чем 0,1. То же самое можно сказать обо всех точках гиперболы, находящихся левее точки В.

Ордината точки А равна 0,1. Найдем ее абсциссу, подставив это значение вместо переменной у в формулу. Она равна 50. Выбрав какое-нибудь значение абсциссы, большее 50, например 55, найдем точку с этой абсциссой, принадлежащую графику функции и удовлетворяющую нашему условию: , это точка с координатами .

Поскольку в задаче требуется указать координаты какой-нибудь одной точки гиперболы, находящейся на расстоянии, меньшем, чем 0,1 от оси х, то ответ на вопрос уже получен. Однако, полезно заметить, что точка левой ветви гиперболы, симметричная найденной, – точка  также находится от оси х на расстоянии, меньшем 0,1. Число 55 было взято в качестве примера, очевидно, что ответы учащихся будут различаться. Для самопроверки полезно предложить учащимся указать расстояние от найденной ими точки до оси х и убедиться в том, что оно меньше 0,1. Так, в данном случае . Аналогичные рассуждения можно провести для расстояния, равного 0,01. Вполне возможно, что некоторые учащиеся будут решать эту задачу методом проб, подбирая требуемое значение х. Такое решение вполне допустимо, но все же полезно показать им и приведенное здесьрассуждение.

№ 793. Постройте график функции:

а) ;

б) .

Эта задача является достаточно трудной для восьмиклассников. За образец можно принять рассуждение, проведенное при построении графика   в 7 классе (учебник [1], глава 5, пункт 5.4).

Приведем эти рассуждения:

При х = 0 функция не определена. Проанализируем формулу отдельно для положительных и отрицательных чисел.

Модуль положительного числа равен самому числу. Значит, при х > 0 выполняется равенство . Модуль отрицательного числа равен противоположному ему числу. Значит, при х < 0 формула принимает вид . Поэтому условие  можно записать следующим образом:

Таким образом, требуется построить график кусочно-заданной функции.

В результате изучения этого пункта учащиеся должны уметь строить и читать график функции .

2.4. Методические рекомендации по изучению функциональной линии в 9 классе.

В учебнике 9 класса содержится одна глава, посвящённая функциям: «Квадратичная функция».

Эта глава разделена на пять пунктов, четыре из которых посвящены функциональной линии:

1. Какую функцию называют квадратичной.

2. График и свойства функции .

3. Сдвиг графика функции  вдоль осей координат.

4. График функции .

5. Квадратные неравенства.

Основные цели этой главы – познакомить учащихся с квадратичной функцией как с математической моделью, описывающей многие зависимости между реальными величинами, научить строить её график и читать по нему свойства этой функции, сформировать умение использовать данныеграфика для решения квадратных неравенств.

Изучение темы начинается с общего знакомства с функцией у = ах2 + bх + с. На готовом чертеже выявляются основные особенности её графика. В небольшом историческом экскурсе «раскрывается» геометрическое «происхождение» параболы и приводятся примеры использования её свойств в технике. Этот вводный фрагмент, сопровождаемый серией разнообразных заданий, делает дальнейшее изучение темы осознанным и целенаправленным.

Далее изложение материала осуществляется следующим образом: сначала рассматриваются свойства и график функции у = ах2. Затем изучается вопрос о графиках функций у = ах2 + q, у = а(х + р)2, у = а(х + р)2 + q, которые получаются с помощью сдвига вдоль осей координат «стандартной» параболы у = ах2. Наконец, доказывается теорема о том, что график любой функции вида у = ах2 + bх + с может быть получен путем сдвигов вдоль координатных осей параболы у = ах2.

Теперь учащиеся по коэффициентам квадратного трехчлена ах2 + bх + с могут представить общий вид соответствующей параболы и вычислить координаты её вершины.

В системе упражнений значительное место отводится задачам прикладного характера. Завершается тема рассмотрением вопроса о решении квадратных неравенств, используемый при этом прием основан на использовании графиков.

Примерное распределение учебного материала

(Всего на тему отводится 20 ч)

Название пунктов в учебнике Число уроков
2.1. Какую функцию называют квадратичной 3
2.2. График и свойства функции у = ах2 3
2.3. Сдвиг графика функции у = ах2 вдоль осей координат 4
2.4. График функции у = ах2 + bх + с 5
2.5. Квадратные неравенства 4
Зачет 1

 

Изучение первого пункта «Какую функцию называют квадратичной» преследует две цели:

1) создание первоначальных представлений о графике квадратичной функции, знакомство с параболой как с геометрической фигурой;

2) повторение некоторых общих сведений о функциях, известных учащимся из курса 8 класса.

Этот пункт очень важен для осознанного изучения дальнейшего материала. При работе с теоретической частью и выполнении заданий учащиеся должны будут проводить наблюдение, выдвигать гипотезы, рассуждать, доказывать, переходить от одной системы терминов к другой.

Вначале приводится определение квадратичной функции (квадратичной функцией называют функцию, которую можно задать формулой вида , где a, b и c – некоторые числа, причём a≠0), которое иллюстрируется примерами зависимостей из геометрии и физики. Авторы делают замечание, что данная функция необязательно должна состоять из трёх слагаемых, главное, чтобы было слагаемое, содержащее квадрат независимой переменной.

Затем отмечается, что график любой квадратичной функции – это парабола и приведены различные виды парабол (из жизни).

После этого рассматривается построение графика функции


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: