Магнитные «бутылки» и «пробки»

Итак, чтобы плазма не ускользала через концы прямой трубы, надо ее согнуть в «бублик» и создать в ней, винтовое магнитное поле. А нельзя ли в прямой трубе просто «заткнуть» ее концы какими-нибудь «пробками»? Ясно, что ни один материал для этой цели не подойдет, потому что он мгновенно испарится при тех колоссальных температурах, которые должна иметь термоядерная плазма. Значит, нужно подобрать невидимые, но крепкие магнитные пробки. Такие «пробки» действительно существуют. Ловушку с магнитными пробками называют «пробкотроном».

Рис.8

 

 Представьте себе магнитное поле с линиями индукции, напоминающими горлышко бутылки (рис. 8). Пусть Z — ось симметрии магнитного поля. Разложим вектор индукции В магнитного поля в некоторой точке А на две составляющие: параллельно оси Z—ВII и перпендикулярную ей — В Если положительно заряженная частица движется перпендикулярно оси Z, то под действием составляющей поля ВII она будет вращаться по циклотронной окружности. Но вращающийся заряд представляет собой круговой ток, который находится в магнитном поле В. Это поле действует по закону Ампера на ток с силой, направление которой можно определить по правилу правого винта (рис. 8). В точке А ток направлен внутрь страницы. Поэтому сила Ампера направлена вправо, в сторону уменьшения поля. Так же вправо действует сила и в любой другой точке кругового тока. Таким образом, неоднородное магнитное поле стремится вытолкнуть циклотронный кружок в сторону ослабления поля (рис. 8). Вращающийся электрон выталкивается в ту же сторону. Дело в том, что в магнитном поле электроны и положительные ионы вращаются в противоположные стороны. Поэтому соответствующие им токи имеют одинаковые направления (движению электрона в каком-то направлении соответствует электрический ток в противоположном направлении). Следовательно, и электронный, и ионный циклотронные кружки выталкиваются в одну и ту же сторону.

Всякий круговой ток создает вокруг себя собственное магнитное поле, направление которого определяется по правилу правого винта. Значит, и циклотронный кружок, создавая такое поле, обладает свойствами магнита. Его можно характеризовать магнитным моментом. Численное значение магнитного момента определяется по формуле

M=IS,

где I— сила тока, S — площадь, ограниченная контуром с током (площадь циклотронного кружка).

Оказывается, что если скорость частицы перпендикулярна магнитному полю, то магнитный момент ее циклотронного кружка равен отношению кинетической энергии частицы к индукции магнитного поля:

Если же скорость частицы направлена под каким-то углом α к силовым линиям магнитного поля, то в данную формулу надо вместо полной скорости v подставить «поперечную» составляющую скорости частицы

 

«Продольная» составляющая скорости

 

Рис.9

 

приводит к движению заряда вдоль линий индукции магнит­ного поля (рис. 9). Таким об­разом, более общей является формула

Оказывается, что когда магнитное поле является слабо неоднородным (рис. 8), то

величина магнитного момента частицы, движущей­ся в таком поле, остается постоянной. Из постоян­ства магнитного момента вытекают интересные и очень важные выводы. Представьте себе, что частица движется в слабо неоднородном магнитном поле в сторону уве­личения его индукции. Тогда из-за того, что магнитный момент остается постоянным, поперечная составляющая вектора скорости   должна увеличиваться. Но мы уже говорили, что в магнитном поле величина ско­рости частицы v не изменяется. Поэтому должен увели­чиваться угол α. Но тогда продольная составляющая скорости  будет уменьшаться (cosα уменьшается с увеличением угла α). Следовательно, когда заряженная частица движется в магнитном поле в сторо­ну увеличения его индукции, ее поперечная скорость уве­личивается, а продольная скорость vII уменьшается. При этом в каком-то месте магнитного поля продольная ско­рость vII может стать равной нулю. Это произойдет при α = 90° (cosα = 0). Тогда поперечная скорость становится максимальной: . Но если продольная скорость равна нулю, то это означает, что частица перестает двигаться вдоль линий индукции магнитного поля, а только вра­щается по циклотронной окружности со скоростью  . Но ведь циклотронный кружок находитсяв неоднород­ном магнитном поле! Это приводит, как мы уже знаем, к тому, что кружок выталкивается в область с меньшей индукцией магнитного поля. Таким образом, бутылкооб­разное магнитное поле «закупорено» магнитной «пробкой»; частицы не могут выскочить через «горлышко» этой «бутылки». Если с обеих сторон прямой трубы создать магнитное поле бутылкообразного типа, то она будет закупорена магнитными «пробками». Получается магнитная ловушка заряженных частиц. Магнитные «пробки» иногда называют магнитными зеркалами. От них, как от зеркал, отражаются заряженные частицы.

А как получить магнитное поле бутылкообразного типа? Вспомним, что для получения однородного магнитного поля нужно взять длинную катушку с равномерным распределением витков и пропустить по ней ток. А чтобы получить магнитное поле в пробкотроне, берут катушку с неравномерным распределением витков - на концах катушки витки проволоки располагаются гуще, чем в середине. Можно также на концы длинной катушки насадить две дополнительные катушки для усиления там магнитного поля. Это изображено на рис.10.

Рис.10

 

Итак, магнитное поле в пробкотроне способно удерживать заряженные частицы. Но все ли частицы оно удерживает? Сразу ясно, что если какая-то частица имеет только продольную скорость vII, а поперечная скорость v равна нулю, то магнитные пробки ее не удержат! Она беспрепятственно покинет ловушку. Ведь на частицу, движущуюся вдоль силовых линий, магнитное поле не действует! Таким образом, магнитное поле «закупорено» неодинаково для частиц с разными направлениями скорости. Чем больше поперечная скорость частицы по сравнению с продольной, тем лучше действуют в отношении этих частиц магнитные «пробки». Другими словами, пробочное действие магнитного поля зависит не только от изменения напряженности поля, но и от соотношения между v и vII, т.е. от угла α между скоростью частицы и направлением линий индукции поля.

Анализ показывает, что если Вm — наибольшая величина индукции магнитного поля, то все частицы, для которых

 

хорошо «закупорены» в ловушке, а частицы, для которых

могут просачиваться через магнитные пробки.

Если бы частицы не сталкивались друг с другом, то все частицы, удовлетворяющие второму неравенству, покинули поле, и в ловушке остались бы лишь частицы, которые она прочно удерживает. В действительности же из-за столкновений между частицами со временем все большее число их удовлетворяет второму неравенству. Это приводит к постепенному, но непрерывному уходу частиц из ловушки. В конце концов ловушку должны покинуть все частицы. Имеются и другие трудности удержания плазмы в пробкотроне. О некоторых из них будет написано далее.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: