Электрическая цепь, параметры электрических цпей: электрическое сопротивление, электрическая емкость,индуктивность

Электрическое сопротивление

Если в некоторых проводящих частях материальной среды, то есть участках электротехнического устройства заполненных проводящей средой (проводниками), существует ЭМП и в процентном соотношении энергия токов проводимости значительно преобладает над энергией токов электрического смещения стекающих в окружающую проводник диэлектрическую среду и энергией магнитного поля в этой части пространства, то эту часть среды можно в интегральном смысле заменить некоторым условным элементом, называемым электрическое сопротивление R. Элемент электрическое сопротивление призван связать между собой электрический ток проводимости,

проходящий через эту проводящую часть пространства, и электрическое напряжение между граничными точками рассматриваемого участка.

Математически эта связь записывается в виде:

                                    или

и называется закон Ома. В электрических цепях такой участок изображается в виде схемы.

                                              

                                                   

                                                         

Полученный элемент ЭЦ является идеализированным, так как введен при вышеописанных идеализациях энергетических процессов в ЭМП.

Величина, обратная электрическому сопротивлению называется электрической проводимостью G:

                                                 .

Энергия электрического поля, поступающая в проводящий участок R

безвозвратно теряется в нем, преобразуясь в другие виды энергии (тепловую, механическую и т. п.). Мощность этой энергии P определяется током и напряжением этого участка среды

                                                  .

Данное выражение называется закон Джоуля – Ленца. С учетом закона Ома, связывающего ток и напряжение проводящего участка закон Джоуля – Ленца может быть записан в других формах

                             ,                .

Таким образом, введенный идеализированный элемент – электрическое сопротивление R  оценивает безвозвратно потребляемую электрическую энергию в нем.

В системе Си электрическое сопротивление измеряется в Омах (Ом), мощность в ваттах (Вт). При больших значениях сопротивления и мощности используют в качестве единиц измерения килоомы (кОм), мегаомы (МОм), киловатты (кВт),мегаватты (МВт).

Следует отметить, что при выборе направлений отсчета (стрелок) тока и напряжения на R навстречу друг другу в законах Ома и Джоуля – Ленца появляется знак минус

                                      ,           .

                            

                           

 

Емкость

Если ЭМП существует в части пространства заполненной диэлектрической средой с током электрического смещения в ней i(t) и в процентном соотношении энергия определяемая этим током значительно превосходит энергию магнитного поля и энергию токов проводимости появляющихся в этой среде в связи с несовершенством диэлектрика, то эту часть среды можно в интегральном смысле заменить некоторым условным элементом, называемым емкость C. Этот элемент связывает между собой ток электрического смещения протекающий через данную часть пространства и напряжение между граничными точками рассматриваемой диэлектрической среды

                                  

или

                                     .

В электрических цепях такой участок изображается в виде схемы

                                      

                                                         

Емкость оценивает энергию электрического поля Wэ, поступающего в диэлектрическую среду участка и запасенную в ней

.

Если электрическое поле не изменяется во времени, то есть постоянно, то процесс переполяризации диэлектрика отсутствует и ток электрического смещения равен нулю. Следовательно, в режиме постоянного тока емкость является разрывом для цепи на данном участке.

В элементе емкость не происходит преобразования энергии электрического поля в другие виды энергии, а осуществляется запасание (консервирование) этой энергии. Если сравнивать энергетические процессы в элементах R и C, то они в чем-то напоминают энергетические процессы в механике, где разделяется физическая сущность кинетической и потенциальной энергий.

В системе Си емкость измеряется в фарадах (Ф). При малых значениях емкости часто используют такие единицы измерения как микрофарады (мкФ),

нанофарады (нФ), пикофарады (пФ).

Индуктивность

Как было отмечено ЭМП кроме электрической составляющей имеет и магнитную. Магнитное поле появляется там, где есть движущиеся заряды (электрический ток), в виде вихрей вокруг линий тока.

u(t)
i(t)
L
Больших концентраций энергии магнитного поля добиваются с помощью катушек намотанных на каркас большим числом витков. Если в процентном соотношении энергия магнитного поля сосредоточенного в области катушки значительно преобладает над энергией тока проводимости в витках катушки и энергий тока электрического смещения стекающего с поверхности витков в окружающую диэлектрическую среду, тогда данный участок можно представить в виде идеализированного элемента индуктивность L. Условное изображение этого элемента в электрических схемах представлено ниже

 

 

Ток, создающий магнитное поле и напряжение, вычисленное между точками входа тока в катушку и его выхода по пути, где магнитное поле уже практически отсутствует связаны соотношениями:

                                            

Индуктивность L оценивает энергию магнитного поля запасного в объеме данного участка

Если магнитное поле не изменяется во времени, то есть создается постоянным током, то напряжение на этом элементе будет равно нулю. В режиме постоянного тока индуктивность становиться “закороткой” то есть нулевым сопротивлением. Физическое объяснение этого факта связано с тем, что напряжение появляется в переменных магнитных полях как следствие действия закона электромагнитной индукции (закон Фарадея).

Энергия магнитного поля также не преобразуется в данной части пространства в другие виды энергии, и только консервируется в нем (запасается). В системе Си индуктивность измеряется в генри (Гн).

 Кроме введенных выше пассивных идеализированных элементов в ЭЦ действуют и активные идеализированные элементы.

Активные идеализированные элементы ЭЦ

Активным элементом ЭЦ является источник сторонних сил (ЭДС).

В электрических цепях источники ЭДС изображаются в виде.

                                 

Если источники ЭДС постоянные (например, аккумуляторная батарея), то их схематически часто изображают в виде

                                  

Источники ЭДС, разделяют и перемещают заряды на отдельных участках пространства. Заряды, появляющиеся на границе участка сторонних сил порождают тем самым электрическое поле в других частях пространства, где это поле способно перемещать заряды, то есть создавать электрические токи. Конфигурацию этого поля можно менять, меняя конфигурацию материальной среды этого пространства.  Это позволяет, например, без больших потерь энергии доставлять поле в любые отдаленные участки среды. В этом одно из значительных достоинств использования ЭМП.

По закону сохранения энергии работа сил появляющегося электрического поля по перемещению зарядов вне источника ЭДС и работа сторонних сил должны совпадать. Следовательно, источник ЭДС создает напряжение электрического поля на своей границе равное ЭДС

                                      

Это основное свойство идеализированного источника ЭДС, то есть независимо от конфигураций, подключаемых к ЭДС сред напряжение на границах (на входе цепи) остается неизменным и равным ЭДС. Поэтому такие источники ЭДС называют источниками напряжения.

Кроме источников напряжения в качестве источников сторонних сил существует и источники тока. В отличие от источников напряжений эти источники вырабатывают движущиеся заряды то есть ток, причем величина тока уже предопределена, задана и не зависит от количества подключаемых элементов. Физической интерпретацией такого источника в какой-то мере может служить источник радиоактивного излучения.

Условное изображение идеализированного источника тока в ЭЦ представлено ниже

 

                               

 

Таким образом, моделирование ЭМП реального электротехнического устройства может быть осуществлено с помощью двух групп идеализированных элементов: пассивных и активных.

В результате такого моделирования упрощенная модель ЭМП называется электрическая цепь (ЭЦ).

Таким образом, электрическая цепь - это совокупность устройств, электромагнитные процессы в которых могут быть описаны с помощью интегральных понятий ток, напряжение, сопротивление, емкость, индуктивность,ЭДС.

Электрические схемы

Изображение ЭЦ с помощью идеализированных пассивных и активных элементов цепи называется электрической схемой цепи (схемой замещения).

Пример электрической схемы ЭЦ  

 

Разделение ЭМП на идеализированные участки кроме всего прочего отражает и реальный факт существования элементной базы электротехнических схем в виде резисторов, катушек индуктивностей и конденсаторов.

При различных режимах работы этих реальных элементов они представляются в виде схем замещения через идеализированные пассивные элементы ЭЦ.

Резистор.

В первом приближении схема замещения резистора- это сопротивление R.

Напомним только, что сопротивление металлического проводника длиной  l и сечением S рассчитывается по формуле:

                                                          ,

где γ – удельная проводимость материала проводника. Сопротивление, вычисленное по этой формуле соответствует сопротивлению проводника при постоянном токе в нем. Часто это сопротивление называют оммическим.

При переменном токе в проводнике наблюдается так называемый поверхностный эффект, приводящий к неравномерному распределению тока по сечению S и, как следствие, к изменению величины сопротивления. С увеличением частоты тока сопротивление растет. Поэтому часто сопротивление резистора на постоянном токе обозначают как R, а на переменном как r.

Катушка индуктивности

В схеме замещения катушки индуктивности необходимо учитывать потери энергии на сопротивлении обмоточного провода, в ферромагнитном сердечнике и экране. Поэтому в первом приближении схема замещения катушки индуктивности имеет вид, представленный ниже

                          

В режиме постоянного тока катушка индуктивности представляет собой сопротивление  R. Эта схема применяется при анализе в области низких и средних частот. При необходимости учета энергии токов электрического смещения (в области высоких частот) используются схемы замещения второго прядка

                              

                                       

Конденсатор

Основным идеализированным элементом конденсатора является емкость. Однако в случае учета несовершенства диэлектрика и связанных с ним токов прводимости в конденсаторе в схему замещения вводится элемент сопротивление

С
С
R

 

 


                   а)                                                    б)

Следовательно, в режиме постоянного тока конденсатор представляется в виде сопротивления R (или проводимости G).

Из рассмотренного материала следует, что относительно несложные реальные электрические цепи при учете свойств реальных элементов могут иметь достаточно сложную схему замещения.

Источники электрической энергии

Реальные источники электрической энергии также представляются схемой замещения, состоящей из идеализированных элементов.

К реальным источникам энергии можно отнести: аккумуляторные батареи, химические источники(батарейки), электромашинные источники(генераторы), источники, работающие на солнечной энергии(солнечные батареи), и т. д.

Все эти источники выполняют двойную функцию: производят разделение зарядов на положительные и отрицательные и тем самым становятся источником электрического поля. Сила, производящая разделение зарядов(сторонняя сила), определяется видом источника. В аккумуляторных батареях и химических источниках(батарейках) это сила электролитической диссоциации, в электромашинных источниках(генераторах) это совместное действие механических сил и магнитного поля.

Особенность реальных источников в том, что они имеют внутренние потери энергии. В схеме замещения реальных источников эти потери оцениваются введением электрического сопротивления, называемым внутренним сопротивлением источника.

Такой источник называется реальный источник напряжения

 

                          

Свойства этого источника определяются его внешней характеристикой, это зависимость напряжения на его выходных зажимах от тока, проходящего через источник

Графически внешняя характеристика имеет вид

Если внутреннее сопротивление реального источника равно нулю, то получается схема идеализированного источника напряжения(источника ЭДС), называемая идеальным источником напряжения. Напомним, что для идеального источника напряжения

                                               

Именно поэтому идеальный источник ЭДС является источником напряжения, то есть напряжение на его зажимах постоянно и не зависит от тока источника.

Если внутреннее сопротивление источника напряжения мало, то напряжение на выходе будет незначительно отличаться от ЭДС, то есть мало меняться при изменении тока (нагрузки) источника. Поэтому такие реальные источники ЭДС называют источниками напряжения.

Если внутреннее сопротивление источника ЭДС увеличивается, то ток источника будет мало отличаться от тока короткого замыкания источника.

                    

Источник ЭДС, работающий в таком режиме называется источником тока. Его схема замещения имеет вид:

                    

Внешняя характеристика реального источника тока имеет вид

                                    

График внешней характеристики источника тока

Если внутреннее сопротивление источника тока стремится к бесконечности, то источник тока превращается в идеальный источник тока. Его схема замещения имеет вид

 

Как видно из графиков внешних характеристик реальных источников напряжения и тока они абсолютно идентичны по своему виду. Поэтому реальные источники напряжения и тока могут взаимно преобразовываться друг в друга.

 При преобразовании источника напряжения в источник тока

                   

При преобразовании источника тока в источник напряжения

                          

 

Основные топологические определения электрической схемы

Граф цепи-это скелетная схема цепи

                   

Ветвь графа цепи-это элемент графа по которому протекает один и тот же ток. Ветвь может содержать один или несколько идеализированных пассивных и(или) активных элементов цепи. На изображенном выше графе 6 ветвей.

Узел графа цепи-это место соединения трех или более ветвей. На изображенном выше графе 4 узла.

Контур графа цепи- замкнутый путь, состоящий из ветвей графа. На изображенном выше графе можно найти 7контуров.

 



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: