Схема проведения анализа

Лекция. Спектральный анализ. Эмиссионный спектральный анализ»

Введение

Спектральный анализ

История создания

Схема проведения анализа

Методы спектрального анализа и их применение в экспертных исследованиях

Оборудование для проведения анализа

Заключение

Литература

 

Введение

В современной науке и технике, для того чтобы определить химический состав веществ, используют множество различных методов. Минералы, найденные геологами, и новые вещества, полученные химиками, характеризуются, прежде всего, по составу. Для правильного ведения технологических процессов в разных отраслях необходимо точное знание химического состава данного сырья.

Химические методы анализа не всегда соответствуют требованиям техники и науки. В связи с этим на практику внедряются физико-химические и физические методы исследования, которые являются более точными. Среди этих методов одно из значимых мест занимает спектральный анализ, имеющий множество ценностей и преимуществ.

Цель:

Изучение роли математических методов в металлургическом производстве

Задачи:

Рассмотреть классификации математических моделей

Выявить роль математических методов в исследовании надежности металлургического оборудования

Привести примеры расчетов математических методов


Спектральный анализ

Спектральный анализ – это физический метод определения состава вещества, основанный на изучении спектров испускания, поглощения, отражения и люминесценции. Атомы каждого элемента испускают излучение определенных длин волн, это и позволяет определить, какие элементы входят в состав данного вещества.

Когда мы используем методы спектрального анализа, мы должны учитывать в какой последовательности следует проводить анализы, чувствительность анализа, также иметь ввиду, что некоторые методы ведут к уничтожению вещественных доказательств, в результате чего, дальнейшее исследование вещества невозможно.

Основные характеристики

По решаемым задачам спектральный анализ можно разделить на: элементарный – когда устанавливается состав пробы по элементам; молекулярный – когда устанавливается молекулярный состав пробы; структурный – устанавливаются составляющие молекулярного соединения; изотопный – состав пробы устанавливается по изотопам (разновидности химических элементов).

По характеру получаемых результатов: Качественный (в результате анализа определяется состав без указания на количественное соотношение компонентов); полуколичественный (результат выдается в виде оценки содержания компонентов); количественный (выдается точное количественное содержание элементов в пробе).

Чувствительность спектрального анализа, как правило, очень высока. Минимальная концентрация определяемого вещества, которая может быть обнаружена и измерена спектральными методами, колеблется в широких пределах в зависимости от свойств этого вещества и состава анализируемой пробы. Прямым анализом при определении большинства металлов и ряда других элементов сравнительно легко достигается чувствительность 10-3 — 10-4%, а для некоторых веществ даже 10-5 — 10-6%. И только в особо неблагоприятных случаях чувствительность уменьшается до 10-1 — 10-2%. Применение предварительного отделения примесей от основы пробы позволяет сильно (часто в тысячи раз) повысить чувствительность анализа.

Точность атомного спектрального анализа зависит, главным образом, от состава и структуры анализируемых объектов. При анализе образцов, близких по своей структуре и составу, можно легко достигнуть высокой точности. Ошибка в этом случае не превышает ± 1—3% по отношению к определяемой величине.

Скорость спектрального анализа значительно превышает скорость выполнения анализа другими методами. Это объясняется тем, что при спектральном анализе не требуется предварительного разделения пробы на отдельные компоненты. Кроме того, сам анализ выполняется очень быстро. Так при применении современных методов спектрального анализа точное количественное определение нескольких компонентов в сложном образце занимает всего несколько минут с момента доставки пробы в лабораторию до получения результатов анализа. Продолжительность анализа, конечно, возрастает, когда для повышения точности или чувствительности требуется предварительная обработка пробы.

С высокой скоростью проведения спектрального анализа тесно связана его большая производительность, что очень существенно при массовых анализах. Благодаря большой производительности и малому расходу реактивов и других материалов стоимость одного анализа при применении спектральных методов обычно мала, несмотря на значительные первоначальные затраты на приобретение спектрально-аналитического оборудования. Больше того, как правило, чем выше первоначальные затраты и сложнее предварительная подготовка аналитической методики, тем быстрее и дешевле выполнение массовых анализов.


История создания

Тёмные линии на спектральных полосках были замечены давно, но первое серьёзное исследование этих линий было предпринято только в 1814 году Йозефом Фраунгофером. В его честь эффект получил название «Фраунгоферовы линии». Фраунгофер установил стабильность положения линий, составил их таблицу (всего он насчитал 574 линии), присвоил каждой буквенно-цифровой код. Не менее важным стало его заключение, что линии не связаны ни с оптическим материалом, ни с земной атмосферой, но являются природной характеристикой солнечного света.

В 1859 году Г. Кирхгоф и Р. Бунзен после серии экспериментов заключили: каждый химический элемент имеет свой неповторимый линейчатый спектр, и по спектру небесных светил можно сделать выводы о составе их вещества. С этого момента в науке появился спектральный анализ, мощный метод дистанционного определения химического состава.

Спектральный анализ был открыт в 1859 году Бунзеном и Кирхгофом, профессорами химии и физики одного из старейших и престижных учебных заведений Германии - Гейдельбергского университета имени Рупрехта и Карла. Открытие оптического метода исследования химического состава тел и их физического состояния содействовало выявлению новых химических элементов (индия, цезия, рубидия, гелия, таллия и галлия), возникновению астрофизики и стало своеобразным прорывом в различных направлениях научно-технического прогресса.

 

Схема проведения анализа

В основу спектрального анализа положено разложение белого света на составные части. Если пучок света пустить на грань трехгранной призмы, то, преломляясь в стекле, составляющие белый свет лучи дадут на экране радужную полоску, называемую спектром. В спектре все цвета идут в строгом порядке. Каждому цвету соответствует определенная длина этой волны или частоты. Длина волны в спектре уменьшается от красных лучей к фиолетовым от 0,7 до 0,4 мкм, а частота увеличивается, от 390 ТГц до 750 ТГц.

Приложение №1.

Атомы каждого химического элемента имеют строго определённые резонансные частоты, в результате чего именно на этих частотах они излучают или поглощают свет. Это приводит к тому, что в спектроскопе на спектрах видны линии (тёмные или светлые) в определённых местах, характерных для каждого вещества. Интенсивность линий зависит от количества вещества и его состояния. В количественном спектральном анализе определяют содержание исследуемого вещества по относительной или абсолютной интенсивностям линий или полос в спектрах.


Оптический спектральный анализ характеризуется относительной простотой выполнения, отсутствием сложной подготовки проб к анализу, незначительным количеством вещества (10—30 мг), необходимого для анализа на большое число элементов.

Атомарные спектры (поглощения или испускания) получают переведением вещества в парообразное состояние путём нагревания пробы до 1000—10000 °C. В качестве источников возбуждения атомов при эмиссионном анализе токопроводящих материалов применяют искру, дугу переменного тока; при этом пробу помещают в кратер одного из угольных электродов. Для анализа растворов широко используют пламя или плазму различных газов.

 



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: