Сущность детонационного напыления

При детонационном напылении наносимые частицы приобретают энергию во время горения и перемещения ацетиленокислородной смеси в стволе пушки. Детонация – особый вид горения газообразного топлива. Она возникает в начальный период горения смеси и распространяется по трубе со скоростью 2000...3000 м/с. Температура горения смеси при детонационном напылении достигает 5700 К, а развиваемое давление – сотен мегапаскалей. Скорость полета наносимых частиц – 600...800 м/с, а их температура до 4000 К. Покрытия имеют малую пористость (до 0,5 %) и высокую прочность соединения с подложкой (до 200 МПа). Наносимые частицы нагреваются за счет теплообмена с высокотемтературной газовой средой и перемещаются ударной волной, возникшей в результате детонации горючей газовой смеси в стволе установки.

детонация – это процесс взрывного горения горючей смеси с последующим образованием ударной волны. Эта волна перемещается от очага горения (к открытому от днища концу трубы и навстречу фронту первого пламени). Отраженная от днища взрывная волна увлекает навеску порошка и перемещает ее наружу вдоль оси ствола со сверхзвуковой скоростью. После достижения открытого конца ствола детонационная волна затихает на расстоянии за ним примерно 100 мм.

Принцип осуществления вакуумного напыления.

Одним из основных направлений решения проблемы повышения эксплуатационных характеристик материалов и изделий является усовершенствование уже имеющихся и создание новых высокоэффективных способов нанесения качественных покрытий самого различного назначения (износостойких, коррозионностойких, жаропрочных и др.). Основные требования, предъявляемые к покрытию и способу его нанесения, – это высокая прочность сцепления с основой, высокая плотность и заданный состав, возможность осаждения покрытий равномерной толщины, экономичность и технологичность процесса. Достоинствами вакуумных способов нанесения покрытий являются возможность кристаллизации вещества в широком диапазоне регулируемых скоростей осаждения, отсутствие ограничений в смешивании различных материалов в паровой фазе, возможность вводить в металлическую матрицу высокодисперсные частицы упрочняющей фазы с очень равномерным их распределением по объему матрицы, чего нельзя достичь с помощью порошковой металлургии. При наличии ионизированного потока металлического пара и впуске реактивного газа в вакуумную камеру можно получать в зависимости от парциального давления газа упрочненные покрытия из таких тугоплавких соединений, как нитриды, окислы, карбиды и т.д. в результате протекания плазмохимических реакций. Покрытия при вакуумном напылении формируются из потока частиц, находящихся в атомарном, молекулярном или ионизированном состоянии. Этот поток частиц получают распылением материала посредством воздействия на него различными энергетическими источниками. Различают распыление наносимого материала путем термического испарения, взрывного испарения-распыления и ионного распыления твердого материала. Вакуумное напыление проводят в жестких герметичных камерах при давлении 133-10-3...13,3 Па. Благодаря этому обеспечиваются необходимая длина свободного пробега напыляемых частиц и защита материала от взаимодействия с атмосферными газами. В общем случае движущей силой переноса частиц в направлении к поверхности напыления является разность парциальных давлений паровой фазы. Наиболее высокие давления пара, достигающие 133 Па и более, наблюдаются вблизи поверхности распыления (испарения). Это и обусловливает перемещение частиц в направлении напыляемого изделия, где парциальное давление паров минимально. Ионизированные частицы обладают большей энергией, что обеспечивает получение покрытий высокого качества. Способы вакуумного конденсационного напыления классифицируют по различным признакам: · по способам распыления материала и формирования потока распыленных частиц: термическим испарением материала из твердого или расплавленного состояния, взрывным (интенсифицированным) испарениемраспылением; ионным распылением твердого материала и др.; · по энергетическому состоянию напыляемых частиц: напыление нейтральными частицами (атомами, молекулами) с различным их энергетическим состоянием; напыление ионизированными частицами; напыление ионизированными ускоренными частицами. В реальных условиях в потоке присутствуют различные частицы; · по способу взаимодействия напыляемых частиц с остаточными газами камеры: напыление в инертной разреженной среде или в высоком вакууме (133-10-3Па); напыление в активной разреженной среде (13,3-10-4…133-10-4Па).

Процесс вакуумного напыления покрытий включает три стадии: 1)переход конденсированной фазы в газо- или парообразную фазу; 2)формирование потока и перенос напыляемых частиц на поверхность напыления; 3)конденсация паров на поверхности напыления – формирование покрытия.

Преимущества газодинамического напыления при восстановлении

Деталей машин.

· покрытие наносится в воздушной атмосфере при нормальном давлении, при любых значениях температуры и влажности атмосферного воздуха; · при нанесении покрытий оказывается незначительное тепловое воздействие на покрываемое изделие; · технология нанесения покрытий экологически безопасна (отсутствуют высокие температуры, опасные газы и излучения, нет химически агрессивных отходов, требующих специальной нейтрализации); · не всегда требуется подогрев покрываемого изделия; · при отсутствии на подложках пластовой ржавчины или окалины на металлическом изделии не требуется тщательной подготовки поверхности (при воздействии высокоскоростного потока частиц происходит очистка поверхности от технических загрязнений, масел, красок и активация кристаллической решетки материала изделия); · поток напыляемых частиц является узконаправленным и имеет небольшое поперечное сечение, это позволяет, в отличие от традиционных газотермических методов напыления, наносить покрытия на локальные (с четкими границами) участки поверхности изделий; · возможно нанесение многокомпонентных покрытий с переменным содержанием компонентов по толщине.

Газодинамический способ нанесения покрыти отличается тем, что покрытие формируется из частиц, ускоренных сверхзвуковым газовым потоком. Поток газа с частицами проходит через сверхзвуковое сопло, при этом нет необходимости подготавливать напыляемую поверхность, в том числе нагревать ее. Технология нанесения покрытий включает в себя нагрев сжатого газа (воздуха), подачу его в сверхзвуковое сопло и формирование в этом сопле сверхзвукового воздушного потока, подачу в этот поток порошкового материала, ускорение этого материала в сопле сверхзвуковым потоком воздуха и направление его на поверхность обрабатываемого изделия (рис. 4.10, 4.11).

Раздел 5


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: