Касательная плоскость и нормаль к поверхности

Геометрическим образом (графиком) функции двух независимых переменных  в пространстве R3 является некоторая поверхность Q. Выберем на ней точку .

Определение. Касательной плоскостью к поверхности Q в данной точке  называется плоскость, которая содержит все касательные к кривым, проведенным на поверхности через эту точку.

Уравнение касательной плоскости к поверхности  в точке  имеет вид

.

Если уравнение поверхности Q задано неявной функцией

, то:

, .

Подставим значения частных производных в уравнение касательной:

.

Следовательно, уравнение касательной плоскости к поверхности  в точке  в случае неявного задания функции имеет вид

Определение. Точка, в которой  или хотя бы одна из этих производных не существует, называется особой точкой поверхности. В такой точке поверхность может не иметь касательной.

Определение. Нормалью к поверхности Q в данной точке  называется прямая, проходящая через эту точку перпендикулярно к касательной плоскости, проведенной в данной точке поверхности.

Запишем уравнения нормали к поверхности  в точке , пользуясь условием перпендикулярности прямой и плоскости:

Если поверхность Q задана неявно функцией  то уравнения нормали принимают вид

.

Пример. Найти уравнения касательной плоскости и нормали к поверхности  в точке .

Решение. Уравнение поверхности задано явной функцией. Вычислим частные производные функции в точке :

, ,

, .

Тогда уравнение касательной плоскости примет вид

.

Найдем уравнения нормали:

Пример. Найти уравнение касательной плоскости и нормали к поверхности  в точке .

Решение. Уравнение поверхности задано неявно. Вычислим частные производные функции в точке

, , ,

, , .

Следовательно, уравнение касательной плоскости имеет вид

.

Находим уравнения нормали

.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: