Средства измерения прямого преобразования и сравнения

Структурная схема СИ определяется методом преобразования. Для удобства анализа различных измерительных устройств их принято рассматривать как некоторый преобразователь, служащий для преобразования входного сигнала Х в выходной У.

Рассмотрим структурные схемы измерительных устройств прямого действия и сравнения. Первые часто называют измерительными устройствами прямого преобразования (схема а), а вторые – измерительными устройствами уравновешивающего или компенсационного преобразования (схема б).

Измеряемая физическая величина Х поступает на чувствительный элемент 1, где преобразуются в другую физическую величину, удобную для дальнейшего использования (например: ток, напряжение, давление, перемещение, сила), и поступает на промежуточный преобразовательный элемент 2, который обычно либо усиливает поступающий сигнал, либо преобразует его по форме (в частном случае может и отсутствовать). Выходной сигнал с элемента 2 поступает к измерительному механизму 3, перемещение элементов которого определяется с помощью отсчетного устройства 4. выходной сигнал У (показание), формируемым измерительным прибором может быть воспринят органами чувств человека.

 
 

 
 
(а)


Отличительной особенностью приборов, основанных на методе уравновешивающего преобразования является наличие отрицательной обратной связи. Здесь сигнал Z, возникающий на выходе чувствительного элемента, поступает на преобразователь 5, который способен осуществлять сравнение двух величин (элемент сравнения или компарирующий элемент), поступающих на его вход. Кроме величины Z на вход элемента 5 подается с противоположным знаком величина Zур (уравновешивающий сигнал), которая формируется на выходе обратного преобразовательного элемента 6. На выходе элемента 5 формируется сигнал, пропорциональный разности значений величин Z и Zур. Этот сигнал поступает в промежуточный преобразовательный элемент 2, выходной сигнал которого поступает одновременно на измерительный механизм 3 и на вход обратного преобразовательного элемента 6.

В зависимости от типа промежуточного преобразовательного элемента 2 при каждом значении измеряющего параметра и соответствующем ему значении Z разность (Z - Zур), поступающая на вход элемента 5. может сводиться к нулю или иметь некоторое малое значение, пропорциональное измеряемой величине.

 
 

 
 

Схемы а и в имеют сигнал, недоступный для восприятия человеком, но могут быть использованы для передачи на расстояние, хранения и обработки информации благодаря оконечному преобразователю 7, предназначенному для формирования выходного сигнала (усиливает его по мощности, преобразует в частоту колебаний и т.д.).

Данные схемы могут быть как ручными, так и автоматическими.

ТИПОВЫЕ СИСТЕМЫ АВТОМАТИЧЕСКОГО КОНТРОЛЯ

И РЕГУЛИРОВАНИЯ.

Системой автоматического контроля называют систему, состоящую из объекта контроля и различных устройств, выполняющих функции измерения.

В большинстве случаев система автоматического контроля одной величины включает четыре элемента: объект измерения, чувствительный элемент, линию связи и измерительное устройство.

Под объектом измерения понимают сложное явление или процесс, характеризующийся множеством отдельных физических величин (параметров объекта), каждая из которых может быть измерена в отдельности, но в реальных условиях действует на измерительное устройство совместно со всеми остальными параметрами.

Физическую величину, которая выбрана для измерения, называют измеряемой величиной.

Чувствительный элемент устанавливают непосредственно в объекте контроля, он воспринимает величину контролируемого (измеряемого) параметра и преобразует ее в соответствующий сигнал, поступающий по линии связи к измерительному устройству.

Структурные схемы такой системы показаны на рис. 1а, б, в, где каждый из элементов представлен прямоугольником; стрелки между прямоугольниками показывают направление передачи сигналов с одного элемента на другой. Элементы характеризуются сигналами на входе и выходе, называемыми также входными и выходными сигналами. Здесь передача сигнала идет в одном направлении, т.е. от объекта к измерительному устройству. Такие системы автоматического контроля называют разомкнутыми. В некоторых системах контроля чувствительный элемент является измерительным элементом устройства. В этом случае линия связи между чувствительным и измерительным элементами отсутствует, а структурные схемы контроля соответствуют схемам 1б, в.

Если измерительный прибор, например термометр или манометр устанавливают непосредственно на объекте, то системе контроля соответствует схема на рисунке 1б. если же измерительный прибор, например манометр установлен на небольшом расстоянии от объекта и соединен с объектом линией связи (трубкой), то системе контроля соответствует схема 1в.

Системы автоматического контроля подразделяются на местные, дистанционные и телеизмерительные.

Системы контроля, в которых измерительные устройства расположены вблизи объекта (вблизи места установки чувствительного элемента), называют местными.

Автоматический контроль можно осуществлять и на расстоянии от контролируемого объекта, удлинив линию связи между чувствительным элементом и измерительным устройством. В этих случаях система местного контроля усложняется введением в измерительное устройство преобразователя для преобразования результата измерения в пропорциональный пневматический или электрический сигнал. Последний содержит информацию о величине измеряемого параметра и по соответствующей линии связи передает ее другому измерительному устройству, расположенному на расстоянии от объекта контроля. Во втором измерительном приборе осуществляется обратное преобразование сигнала, переданного по линии связи, в результат измерения. Подобные системы автоматического контроля называются дистанционными.

Таким образом, дистанционная система контроля имеет два измерительных устройства: первичный и вторичный приборы. Причём, первичным прибором называется прибор который первый контактирует с измеряемой средой. Вторичным называется прибор который принимает сигнал от первичного и преобразует его в форму удобную для восприятия оператором.

В зависимости от вида используемой энергии дистанционные системы подразделяются на пневматические, электрические и гидравлические.

Для передачи результатов измерения на расстояния в десятки и сотни километров применяют телеизмерительные системы контроля. В таких системах результат измерения при помощи преобразователя в первичном приборе преобразуется в кодированные, обычно дискретные сигналы, передаваемые по каналу (линии) связи. Во вторичном приборе, установленном на другом конце канала связи, эти сигналы преобразуются в результат измерения и фиксируются в цифровой и аналоговой форме.

Для контроля за работой сложных производственных процессов применяют системы централизованного контроля. В этом случае вторичные приборы устанавливаю на центральном щите.

Выходная информация, которая используется для воздействия на контролируемый процесс, называется оперативной. Чтобы сократить выходную информацию о большинстве контролируемых величин ее можно заменить сигнализацией, которая включается только тогда, когда какая-либо контролируемая величина достигает некоторого наперед заданного значения. Обычно при отклонении контролируемого параметра от заданного значения машина выдает световой и звуковой сигнал. Значения контролируемых величин могут быть также получены оператором по вызову. Отклонения контролируемых параметров от пределов установленных пределов измерения регистрируются в непрерывной или цифровой форме.

Лекция № 4 ОБОЗНАЧЕНИЕ ОБОРУДОВАНИЯ И СРЕДСТВ АВТОМАТИЗАЦИИ НА ФУНКЦИОНАЛЬНЫХ СХЕМАХ.

Функциональной схемой называется принципиальное отображение аппаратов, связывающих их трубопроводов и средств автоматизации, расположенных на одном чертеже. Схема технологического процесса занимает 2/3 чертежа по вертикали и горизонтали. Остальное пространство занимают таблицы (над штампом) и расположение системы автоматического управления (нижняя часть чертежа, до штампа).

Аппараты отображаются в приближенном масштабе, исходя из технических характеристик оборудования, которые указываются в технологическом или техническом регламенте процесса.

Насосы устанавливаются на чертеже ниже основного оборудования, приблизительно на одном уровне, т.к. при работе они используют силу тяжести среды и устанавливаются на уровне земли (чаще всего в одном помещении, предназначенном для насосов).

Вещества, проходящие по трубопроводам, обозначаются в зависимости от агрегатного состояния либо пустой стрелкой (газ, пар) либо закрашенной (жидкость, смесь), стрелка представляет совой равносторонний треугольник со стороной 5 мм.

Так как проект представляет незначительно изменённую часть реальной технологической схемы то указывается направление потоков с указанием номеров цехов, названий технологических операций куда(откуда) идут технологические потоки.

Для сокращения числа надписей на чертежах основные вещества обозначаются в виде 27-ми цифр, составляющих основной перечень. В случае, если используется вещество, не указанное в данном списке, ему присваивается номер, начиная с 28-ми и далее. Цифры, обозначающие вещества, устанавливаются в разрывах трубопровода с периодичностью каждые 10 – 15 см. или на каждом участке трубопровода, требующем уточнения. Размеры шрифтов выбираются исходя из приоритетов, т.е. чем важнее обозначение тем крупнее шрифт. Например, в первую очередь на чертеже читают оборудование по этому размер шрифта оборудования выбирается наибольший из используемых.

Толщина трубопроводов на чертеже задаётся в зависимости от реальных диаметров условно. При отображении функциональных схем трубопроводы не должны пересекать контуры аппаратов. Изгиб трубопроводов разрешается только под прямым углом. Пересечение трубопроводов на чертежах происходит без дополнительных обозначений, за исключением сочленений или разветвлений трубопроводов. В этом случае на пересечении ставится точка.

Провода на чертеже указываются тонкими линиями (в 2 – 3 раза тоньше трубопровода). Провода так же как и трубопроводы разрешается перегибать только под прямыми углами.

ВАЖНО:

Для упрощения чтения схем пересечение линий одинакового функционального назначения не допускается.

Расстояние между двумя любыми соседними точками на чертеже не должно быть меньше трёх мм.

ОБОЗНАЧЕНИЕ ПРИБОРОВ И СРЕДСТВ АВТОМАТИЗАЦИИ.

Приборы обозначаются в виде окружностей диаметром 10 мм., в случае большого числа обозначений – овалом высотой 10 мм. В случае расположения прибора на щите по центру окружности горизонтально проводится линия. В верхней половине окружности перечисляются функции прибора, в нижней – порядковые номера приборов. Первый номер указывает номер контура, второй – номер прибора в контуре.

Функциональные обозначения прописываются исходя из англоязычного обозначения заглавными буквами. Функции прибора прописываются в три этапа в зависимости от места обозначения.

На первом месте обозначаются измеряемые параметры:

Т – температура;

Р – давление,

L – уровень,

F – расход,

М – влажность,

Q – состав или качество,

А - электрические параметры.

И т.д.

На втором месте – функции прибора:

Т – стандартный сигнал, пригодный для передачи,

Е – первичное преобразование в сигнал, чаще всего нестандартный,

Y – преобразование одного вида сигнала в другой при передаче,

J – обегание сигнала (т.е. прибор по очереди опрашивает – обегает первичные датчики),

I – прибор имеет шкалу или показывает (индикация),

Н – ручное управление,

А – сигнализация,

S – блокировка,

D – перепад,

К – прибор имеет задатчик,

G – указатель положений. И т.д.

На третьем месте – дополнительные функции прибора:

R – регистрация (запись),

С – управление (регулирование),

К – прибор имеет задатчик,

G – указатель положений.

И т.д.

Существует правило, что при отсутствии обозначения на своем месте указываются последующее, например: HS – кнопка, TR – прибор регистрации температуры и т.п. Кроме того, существуют резервные обозначения X, Y, Z, которые могут быть присвоены специфическим параметрам процесса. Их необходимо уточнять исходя из технологической схемы.

Попробуем прочитать следующие обозначения: QIR, TE, LT, PIA.

КОНТУР КОНТРОЛЯ ТЕМПЕРАТУРЫ.

Где Е/Е – преобразование первичного измерительного сигнала в стандартный электрический сигнал, пригодный для дальнейшей передачи.

Е/Р – преобразование стандартного электрического сигнала в пневматический (сигнал в виде давления сжатого воздуха).

Из схемы видно, что первичный датчик температуры обладает нестандартным выходным сигналом (например ТС), требующим преобразования, а вторичный прибор (1-4) является пневматическим и расположен на щите.

КОНТУРА СИГНАЛИЗАЦИЙ И БЛОКИРОВОК.

Где Н – обозначает ограничение «не больше», L – «не меньше». В случае срабатывания блокировок клапан, в зависимости от исполнения, полностью откроется или закроется, предотвращая аварийную ситуацию.

Клапана отображаются знаком размером 7х3 мм., длина штока 10 мм., квадрат -5х5мм. В зависимости от исполнения стрелка на штоке меняет направление. Если клапан нормально открытый (НО), то стрелка направлена в сторону квадрата, в этом случае управляющее воздействие клапан закрывает. В противном случае, клапан называется нормально закрытым (НЗ), стрелка направлена к исполнительному механизму.

КОНТУРА РЕГУЛИРОВАНИЯ.

Лекция № 5. ИЗМЕРЕНИЯ ТЕПЛОФИЗИЧЕСКИХ ПАРАМЕТРОВ

ПРИБОРЫ И ПРЕОБРАЗОВАТЕЛИ ДЛЯ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ

В устройствах для измерения температуры обычно используют изменение какого – либо физического свойства тела, однозначно зависящего от его температуры и однозначно поддающегося измерению. К числу свойств, положенных в основу работы приборов и преобразователей для измерения температуры, относятся:

объемное расширение тел,

изменение давления вещества в замкнутом объеме,

возникновение термоэлектродвижущей силы,

изменение электрического сопротивления проводников и полупроводников, интенсивность излучения нагретых тел и др.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: