Лекция № 7 для произвольной точки м(х, у), принадлежащей эллипсу верны соотношения

М

r1

r2

F1 O F2 х

F1, F2 – фокусы. F1 = (c; 0); F2(-c; 0)

с – половина расстояния между фокусами;

a – большая полуось;

b – малая полуось.

Теорема. Фокусное расстояние и полуоси эллипса связаны соотношением:

a2 = b2 + c2.

Доказательство: В случае, если точка М находится на пересечении эллипса с вертикальной осью, r1 + r2 = 2(по теореме Пифагора). В случае, если точка М находится на пересечении эллипса с горизонтальной осью, r1 + r2 = a – c + a + c. Т.к. по определению сумма r1 + r2 – постоянная величина, то, приравнивая, получаем:

a2 = b2 + c2

r1 + r2 = 2a.

Определение. Форма эллипса определяется характеристикой, которая является отношением фокусного расстояния к большей оси и называется эксцентриситетом.

е = с/a.

Т.к. с < a, то е < 1.

Определение. Величина k = b/a называется коэффициентом сжатия эллипса, а величина 1 – k = (a – b)/a называется сжатием эллипса.

Коэффициент сжатия и эксцентриситет связаны соотношением:

k2 = 1 – e2.

Если a = b (c = 0, e = 0, фокусы сливаются), то эллипс превращается в окружность.

Если для точки М(х1, у1) выполняется условие: , то она находится внутри эллипса, а если , то точка находится вне эллипса.

Теорема. Для произвольной точки М(х, у), принадлежащей эллипсу верны соотношения:

r1 = a – ex, r2 = a + ex.

Доказательство. Выше было показано, что r1 + r2 = 2a. Кроме того, из геометрических соображений можно записать:

После возведения в квадрат и приведения подобных слагаемых:

Аналогично доказывается, что r2 = a + ex. Теорема доказана.

С эллипсом связаны две прямые, называемые директрисами. Их уравнения:

x = a/e; x = -a/e.

Теорема. Для того чтобы точка лежала на эллипсе, необходимо и достаточно, чтобы отношение расстояния до фокуса к расстоянию до соответствующей директрисы равнялось эксцентриситету е.

Пример. Составить уравнение прямой, проходящей через левый фокус и нижнюю вершину эллипса, заданного уравнением:

1) Координаты нижней вершины: x = 0; y2 = 16; y = -4.

2) Координаты левого фокуса: c2 = a2 – b2 = 25 – 16 = 9; c = 3; F2(-3; 0).

3) Уравнение прямой, проходящей через две точки:

Пример. Составить уравнение эллипса, если его фокусы F1(0; 0), F2(1; 1), большая ось равна 2.

Уравнение эллипса имеет вид: . Расстояние между фокусами:

2c = , таким образом, a2 – b2 = c2 = ½

по условию 2а = 2, следовательно а = 1, b =

Итого: .

Гипербола.

Определение. Гиперболой называется множество точек плоскости, для которых модуль разности расстояний от двух данных точек, называемых фокусами есть величина постоянная, меньшая расстояния между фокусами.

y

M(x, y)

b

r1

r2

x

а

F1 F2

c

По определению ïr1 – r2ï= 2a. F1, F2 – фокусы гиперболы. F1F2 = 2c.

Выберем на гиперболе произвольную точку М(х, у). Тогда:

обозначим с2 – а2 = b2 (геометрически эта величина – меньшая полуось)

Получили каноническое уравнение гиперболы.

Гипербола симметрична относительно середины отрезка, соединяющего фокусы и относительно осей координат.

Ось 2а называется действительной осью гиперболы.

Ось 2b называется мнимой осью гиперболы.

Гипербола имеет две асимптоты, уравнения которых

Определение. Отношение называется эксцентриситетом гиперболы, где с – половина расстояния между фокусами, а – действительная полуось.

С учетом того, что с2 – а2 = b2:

Если а = b, e = , то гипербола называется равнобочной (равносторонней).

Определение. Две прямые, перпендикулярные действительной оси гиперболы и расположенные симметрично относительно центра на расстоянии a/e от него, называются директрисами гиперболы. Их уравнения: .

Теорема. Если r – расстояние от произвольной точки М гиперболы до какого- либо фокуса, d – расстояние от той же точки до соответствующей этому фокусу директрисы, то отношение r/d – величина постоянная, равная эксцентриситету.

Доказательство. Изобразим схематично гиперболу.

y

a/e d

M(x, y)

r1

0 a F1 x

OF1 = c

Из очевидных геометрических соотношений можно записать:

a/e + d = x, следовательно d = x – a/e.

(x – c)2 + y2 = r2

Из канонического уравнения: , с учетом b2 = c2 – a2:

Тогда т.к. с/a = e, то r = ex – a.

Итого: .

Для левой ветви гиперболы доказательство аналогично. Теорема доказана.

Пример. Найти уравнение гиперболы, вершины и фокусы которой находятся в соответствующих вершинах и фокусах эллипса .

Для эллипса: c2 = a2 – b2.

Для гиперболы: c2 = a2 + b2.

 
 


Уравнение гиперболы: .

Пример. Составить уравнение гиперболы, если ее эксцентриситет равен 2, а фокусы совпадают с фокусами эллипса с уравнением

Находим фокусное расстояние c2 = 25 – 9 = 16.

Для гиперболы: c2 = a2 + b2 = 16, e = c/a = 2; c = 2a; c2 = 4a2; a2 = 4;

b2 = 16 – 4 = 12.

Итого: - искомое уравнение гиперболы.

Парабола.

Определение. Параболой называется множество точек плоскости, каждая из которых находится на одинаковом расстоянии от данной точки, называемой фокусом, и от данной прямой, называемой директрисой и не проходящей через фокус.

Расположим начало координат посередине между фокусом и директрисой.

у

А М(х, у)

 
 


О F x

 
 


p/2 p/2

Величина р (расстояние от фокуса до директрисы) называется параметром параболы. Выведем каноническое уравнение параболы.

Из геометрических соотношений: AM = MF; AM = x + p/2;

MF2 = y2 + (x – p/2)2

(x + p/2)2 = y2 + (x – p/2)2

x2 +xp + p2/4 = y2 + x2 – xp + p2/4

y2 = 2px

Уравнение директрисы: x = -p/2.

Пример. На параболе у2 = 8х найти точку, расстояние которой от директрисы равно 4.

Из уравнения параболы получаем, что р = 4.

r = x + p/2 = 4; следовательно:

x = 2; y2 = 16; y = ±4. Искомые точки: M1(2; 4), M2(2; -4).


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: