Теорема Шура

Пусть - линейное преобразование пространства V над полем комплексных чисел C. Линейное преобразование имеет хотя бы один собственный вектор (Следствие 7.1). Этот факт можно усилить.

Теорема 7.6. Пусть - линейное преобразование пространства V над полем комплексных чисел C. Существует базис V, в котором матрица линейного преобразования имеет верхний треугольный вид.

Доказательство проведем индукцией по размерности V. Пусть утверждение верно для линейных преобразований (n -1)-мерных пространств. Покажем его справедливость для линейного преобразования n -мерного линейного пространства V. Поскольку линейное пространство над полем C, то существует собственный вектор h этого линейного преобразования. Дополним этот вектор до базиса всего пространства векторами . Матрица линейного преобразования в этом базисе имеет блочный вид , где - собственное число для вектора h. Обозначим через W линейную оболочку векторов . Векторы образуют базис W. Обозначим через линейное преобразование W, матрица которого в базисе равна A. По предположению индукции в подпространстве W существует базис , в котором матрица линейного преобразования имеет верхний треугольный вид. Пусть T – матрица перехода к этому базису. Тогда - верхняя треугольная матрица. Матрица перехода от базиса к базису равна , и, значит, матрица в базисе равна , то есть является верхней треугольной.

Аналогом доказанной теоремы над полем вещественных чисел является следующий результат.

Теорема 7.7. Пусть - линейное преобразование пространства V над полем вещественных чисел R. Существует базис V, в котором матрица линейного преобразования имеет блочный верхний треугольный вид. По главной диагонали стоят блоки первого и второго порядка.

Доказательство проведем индукцией по размерности n пространства V. Пусть утверждение верно для линейных преобразований пространств размерности меньшей n. Покажем его справедливость для линейного преобразования n -мерного линейного пространства V. Линейное преобразование имеет либо одномерное, либо двумерное инвариантное подпространство (Следствие 7.2). Дополним базис этого инвариантного подпространства до базиса всего пространства векторами , где k равно либо 2, либо 3. Матрица линейного преобразования в этом базисе имеет блочный вид , где - блок либо первого, либо второго порядка. Далее, рассуждения повторяют доказательство теоремы 7.6.

Теорема 7.8. (теорема Шура). Для линейного преобразования унитарного пространства V существует ортонормированный базис, в котором матрица линейного преобразования имеет верхний треугольный вид.

Доказательство. Пусть - базис V, в котором матрица линейного преобразования имеет верхний треугольный вид (Теорема 7.6). Применим к базису процесс ортогонализации и построим ортогональный базис . Матрица перехода T от базиса к базису - верхняя треугольная и . Поскольку произведение верхних треугольных матриц является верхней треугольной матрицей, то матрица - верхняя треугольная. Положим , где i= 1,…, n. Базис - ортонормированный и матрица линейного преобразования в этом базисе – верхняя треугольная, тем самым теорема доказана.

Теорема 7.9. Для линейного преобразования евклидова пространства V существует ортонормированный базис, в котором матрица линейного преобразования имеет блочный верхний треугольный вид. По главной диагонали расположены блоки первого и второго порядков.

Доказательство аналогично доказательству теоремы 7.7.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: