Основные генераторы энергии - это электрические станции: тепловые (ТЭС),гидравлически(ГЭС), атомные (АЭС), а также транспортные агрегаты (автомобили, тепловозы, теплоходы, тракторы и т.п.).Энергоносителями служат разные виды топлива: нефть, мазут, природный газ, уголь, бензин, дизельное топливо, уран, плутоний, а также гидроресурсы. Расширяется применение возобновляемых источников энергии (ВИА): ветряных, солнечных и приливных. Однако основным источником энергии пока остается органическое топливо. В разных странах вырабатывая на АЭС энергия составляет 10…20%, на ГЭС 4…20%. За счет ВИЭ получают всего 1…2% вырабатываемой энергии. Весьма важно, что на долю транспортных машин приходится более 60% суммарного количества вырабатываемой энергии.
При оценке развития энергетики и формирования энергетической программы следует исходить не только из задачи выработки требуемого количества энергии, но и необходимо учитывать имеющиеся ресурсы, экономические, экологические и социальные факторы.
Для получения целостного представления о перспективах и проблемах развития энергетики на ближайшее время целесообразно оценить возможности каждого из направлений её развития, определяемых видом первичного источника.
Нефть. Установлено, что в недрах планеты имеется примерно 2000 млрд. т нефти, из которых надёжно разведано около 410млрд т. Ежегодное мировое потребление нефти приближается к 3 млрд. т. при естественном её воспроизводстве не более 1%. При планировании развития энергетики на перспективу приходится учитывать, с одной стороны, ограниченность природных запасов нефти, а с другой, − тот факт, что добыча нефти со временем усложняется. Уже сейчас примерно треть всей получаемой нефти добывается из скважин, пробуренных в дне морей и океанов. Глубина подводных скважин всё увеличивается и уже достигает 2 км. Увеличивается и глубина наземных скважин. Целесообразный предел глубин скважин для поиска нефти составляет 4…8 км.
Важное направление связано с развитием экономичных теплосиловых установок и в первую очередь дизелей, на долю которых в настоящее время приходится до 30% суммарной установленной мощности транспортных энергетических установок. К сожалению, использование дизелей приводит к загрязнению окружающей среды. Только судовые, тепловозные и промышленные дизели выбрасывают в год не менее 3 млн.т воздуха, загрязнённого оксидами азота, серы и углерода, углеводородами и сажей.
Уголь. Разведанные запасы угля в мире значительны, но качественно различны. Низкая калорийность углей ряда месторождений вызывает серьёзные трудности в их использовании. Эти угли невыгодно транспортировать на большие расстояния, так как значительная его часть составляют неорганические отходы. Можно перерабатывать эти угли в электрическую энергию на месте добычи. Однако при таком решении проблемы потребуется строительство сверхдальних линий электропередач (ЛЭП), в магистралях которых теряется до 10% энергии и в распределительных сетях - ещё около 40%.
Тем не менее, в ближайшей перспективе количество угля, используемого в качестве топлива в энергетике, хотя и медленно, но возрастать и превысит 9 млрд.т.
Часть добытого угля станет сырьём для производства на месте синтетического жидкого топлива, технология получения которого активно совершенствуется.
Газ. Принято считать, что запасы природного газа на Земле составляют примерно 250 трлн. м. куб., причём из них надёжно разведано 80…90 трлн. м. куб.
Содержание метана в природном газе, который является чистым видом органического топлива, достигает 95%. Однако грамотное применение природного газа требует его предварительной переработки для извлечения таких ценных компонентов, как этан, гелий, этилен и т. п.
Кроме обычного природного газа имеются его большие запасы, связанные с водой в зонах вечной мерзлоты и океане. Есть ещё газ, растворённый в подземной гидросфере. Запасы такого газа значительны и расположены во всех регионах планеты. Разрабатываются технологии поднятия на поверхность подземных вод с последующим их возвращением обратно под Землю после отделения содержащегося в них газа.
Практика убедительно показала, что применение газа (в основном, метана) в качестве энергетического топлива эффективно. Можно прогнозировать, что в ближайшей перспективе приоритет будет за природным газом. И это несмотря на то, что добыча газа усложняется из-за необходимости всё большего углубления скважин и трудностями транспортирования.
Атомная энергетика. В настоящее время на ядерную энергию приходится около 6% мирового топливо – энергетического баланса и 17% производимой электроэнергии.
Наибольшая доля АЭС в производстве электроэнергии во Франции (75%), Литве (73%), Бельгии (~57%), Болгарии, Словацкой Республике, Швеции, Украине, Республике Корея (от 43 до 47%).
Тепловые реакторы на уране – 235 используют природный уран неэффективно (менее 1%). Поэтому они могут быть основой атомной энергетики лишь ограниченное время. Так за время жизни (50 лет) тепловой реактор мощностью 1 ГВт потребляет около 10 тыс. т природного урана при потенциально мировом ресурсе ~ 10 млн.т. Отсюда очевидно, что неизбежным становится использование в ядерном топливном цикле продуктов распада и в первую очередь плутония.
Быстрый реактор, обеспечивающий возможность на каждое разделившееся ядро воспроизводить более одного ядра нового ядерного топлива, позволяет резко увеличить использование природного урана (~ 200 раз). Реальной становится атомная энергетика мощностью 4000 ГВт, функционирующая в течение 2500 лет.
Однако крупные аварии, проблемы нераспространения ядерного оружия, обращения с облученным ядерным топливом и радиоактивными отходами привели к нереализованности первоначальных планов.
Большая работа проводится по повышению эксплуатационной безопасности. Разрабатываемые реакторы третьего-четвёртого поколений характеризуются оценкой риска для человека менее чем 10 в минус 7 степени, что существенно выше, чем на ТЭЦ.
Атомная энергетика, отвечающая современным требованиям безопасности и экономичности, способна в период после 2020 года обеспечить существенную часть прироста мировых потребностей в энергопроизводстве, объективно необходимого вследствие роста населения планеты. Атомная энергетика позволит стабилизировать потребление обычных топлив и выбросов химического горения.
ГЭС. Гидростанции дают относительно небольшое количество электроэнергии. Значительная инерционность ТЭС и АЭС при смене режимов и наиболее высокая экономичность при работе на одном заданном установившемся режиме приводит к необходимости использования ГЭС в качестве регуляторов Единой энергетической системы.
Практика создания крупных ГЭС с большими водохранилищами неминуемо связана с потерей для сельского хозяйства больших площадей пахотной земли, лугов и лесов, а большие искусственные водоёмы со временем приводят к экологически неблагоприятным последствиям.
Одновременно не вызывает сомнений целесообразность более широкого использования гидроэнергетики малых водных потоков с помощью так называемых рукавных переносных электростанций, состоящих из небольших генераторов и гидротурбин. Хотя мощность таких установок невелика – 1…5 кВт, но себестоимость киловатт-часа оказывается ниже, чем у аналогичных по мощности электростанций на основе ДВС.
ВИА. К числу возобновляемых источников энергии обычно относят солнечную энергию во всех её проявлениях: получаемую Землёй теплоту солнечного излучения, энергию ветра, приливов и отливов, энергию волн, а также прирост биомассы на Земле, биогаз из отходов животноводства и др. По оптимистическим оценкам, без ущерба для окружающей среды за счёт ВИЭ в принципе можно получить в несколько раз больше энергии, чем вырабатывается в мире в настоящее время.
Известно, что энергоустановки, работающие на углеродсодержащем топливе, выбрасывают в окружающую среду углекислый газ, улавливать который пока невозможно. В итоге растёт его концентрация, нарушая тепловой баланс планеты, что приводит к её разогреву (парниковому эффекту).
Такой неблагоприятной перспективы можно избежать путём расширения использования возобновляемых источников энергии. По оценкам специалистов вклад ВИЭ в мировую энергетику к 2020 году составит 9-10%.
Солнечная энергия является естественной для Земли, ей обязано своим существованием всё живое. Освоение методов и средств использования солнечной энергии в производстве и быту уже в настоящее время превращается в задачу глобальную для всего человечества.
Геотермальные энергоустановки используют температуру Земли. Это могут быть природные подземные запасы горячей воды или пара, а также закачка воды вглубь земли. Естественно, применение таких установок целесообразно в отдельных районах, например на Камчатке, в Исландии.
Внимание ученых – энергетиков привлекают перспективы использования
возобновляемой биомассы, ежегодный прирост которой оценивается в 107 млрд. т. Энергия, которой обладает такое количество биомассы, эквивалентна 40 млрд. т нефти.
Из зелёной массы в результате переработки получают высокооктановое топливо в виде эфиров и спиртов.
Энергосбережение. Задача обеспечения энергией путём наращивания энергетического потенциала непосильна даже для самых высокоразвитых стран. Для того чтобы темпы наращивания энерговооружённости были реальными, необходимо проводить активную энергосберегающую политику в двух направлениях: повышать экономичность самих энергетических установок и таким образом получать большее количество энергии, и повсеместно сокращать потери энергии и энергоресурсов.
Коэффициент полезного использования энергоресурсов в Украине составляет примерно 40%. Следовательно, 60% - это потери, из которых примерно 20% могут быть отнесены к предотвратимым. Для снижения энергопотребления требуется активное проведение соответствующей государственной политики с внедрением прогрессивных технологий и оборудования. Можно обеспечить значительную экономию энергии и в социально−бытовой сфере, если, например, усилить теплозащитную способность строящих зданий. В настоящее время существуют строи- тельные материалы, позволяющие экономить до 50% теплоты, расходуемых на обогрев зданий. Стены зданий, покрытые специальными прозрачными панелями, пропускают теплоту лучей солнца и не отдают теплоту наружу. Значительную экономию даёт переход для освещения на люминесцентные лампы, которые потребляют энергии примерно в 8 раз меньше чем лампы накаливания. Внедрение энерго- и ресурсосберегающих технологий − дело длительное, трудное и дорогое, но неизбежное и в конечном итоге окупаемое
Экология и защита окружающей среды. Развитие энергетики неразрывно связано с проблемами экологии и зашиты окружающей среды. Электростанции, использующие уголь, вбрасывают ежегодно около 300…350 млн. т золы, свыше 100…120 млн. т оксидов серы и азота. Зола угольных ТЭС содержит радиоактивные изотопы калия, радия и тория, количество которых почти в 10 раз больше (по дозе облучения), чем в выбросах нормально работающих АЭС. По сравнению с лучшими станциями мира наши станции выбрасывают на порядок больше твёрдых частиц, в 3 раза больше серы, в 2 раза - оксидов азота. Серные газы в окружающей среде особенно вредны для населения, животного мира, почвы и водоёмов. Современные очистные сооружения требуют больших средств. Вполне справедливо утверждение, что чистую энергетику бесплатно получить невозможно. Передовые промышленно развитые страны расходуют до 5% валового национального продукта.
Серьёзные экологические проблемы возникают с развитием атомной энергетики и, в частности, связанных с необходимостью захоронения на длительный срок её отходов.
Развитие атомной энергетики осложняется реакцией растительного и животного мира на радиоактивные нуклиды, накапливающиеся в почве. Если к естественным нуклидам мир эволюционно приспособился, то иначе реагируют они на искусственные нуклиды, которые хорошо усваиваются растениями и животными. Они могут накапливаться до концентрации в 70…100 раз большей, чем в окружающей почве, что очень опасно.
Определённые трудности возникают на Земле и в связи с задачей сохранения для людей запасов пресной воды, широко используемой в качестве теплоносителя в энергетических системах. Известно, что в настоящее время запасы пресной воды составляют всего 2,8% от массы Земли и только 0,3% доступны для использования человеком. Таким образом, задача экономии пресной воды или замена её опреснённой морской является актуальной уже в настоящее время.
Всё сказанное свидетельствует о том, что подход к проблемам развития энергетики только с позиций экономических неприемлем. Необходимо увязывать экономические аспекты с социальными и экологическими.