Изменчивость атмосферного давления

Понятие атмосферного давления.

Лекция 6.Атмосферное давление и плотность воздуха.

План лекции:

1. Понятие атмосферного давления.

2. Изменчивость атмосферного давления.

3. Суточные и годовые колебания давления.

4. Формы барического рельефа.

5. Зональность в распределении атмосферного давления.

Рекомендованная литература:

Основные теоретические положения:

Среди всех метеорологических величин основной величиной, определяющей погодный режим и состояние водной поверхности, является давление воздуха. Давление измеряется весом (пропорционально массе) вышележащего столба воздуха на единицу горизонтальной поверхности. В метеорологии давление измеряют в гектопаскалях (гПа), иногда в миллибарах (мб), иногда в миллиметрах ртутного столба (мм.рт.ст.). Соотношения между этими единицами следующие:

1 гПа = 100 Па = 10² Н/м²,

1 мб = 1 гПа,

1 мм.рт.ст. = 1,333224 гПа.

Атмосфера оказывает давление на поверхность, находящуюся в ней и действует во всех направлениях одинаково. Атмосферное давление на уровне моря на планете изменяется в пределах от 940 гПа до 1050 гПа и редко выходит за эти пределы. Нормальное (наиболее часто наблюдающееся давление на уровне моря составляет 1013,2 гПа.)

Распределение давления атмосферы по поверхности Земли неравномерно. Это обусловлено тем, что вес и, следовательно, давление воздуха зависят от его плотности и от широты места, так как с широтой изменяется сила тяжести.

Плотность воздуха, т. е. его количество в единице объема, зависит от температуры, влажности и давления. Эта зависимость определяется известными из физики газовыми законами Бойля-Мариотта, Гей-Люссака, основным уравнением газового состояния Клапейрона и состоит в следующем:

чем выше температура воздуха, тем меньше его плотность, так как с повышением температуры воздух, как и все тела, расширяется и в единице объеме его весовое количество уменьшается;

чем больше влажность воздуха, тем меньше его плотность, так как молекулярная масса водяного пара составляет всего 0,622 молекулярной массы воздуха;

чем больше давление, под которым находится тот или иной объем воздуха, тем больше его плотность, что вполне понятно, так как под давлением все газы легко сжимаются, а при уменьшении давления быстро расширяются.

Атмосферное давление равно весу вышележащих слоев воздуха в данном месте. Изменение давления с высотой в условиях равновесия, т.е. когда воздух находится в покое, характеризуется основным уравнением статики атмосферы, а именно:

p = - ρġ∆z или = - ρġ

где g – ускорение свободного падения или ускорение силы тяжести, зависящее от широты места и высоты; на экваторе сила тяжести меньше, на полюсах больше; на уровне моря на широте 45° ġ = 980,616 см/с2.

ρ – плотность воздуха.

- изменение давления ∆ p в элементарном слое ∆ z, равное весу столбика воздуха высотой ∆ z и площадью 1 см2.

Атмосферное давление, как известно, в значительной степени зависит от температуры воздуха. Температурное поле атмосферы испытывает значительные колебания в пространстве (по горизонтали и вертикали) и времени. Причин таких колебаний множество. Основными из них являются неравномерный приток тепла от Солнца, неравномерность в распределении материков и океанов по поверхности Земли, воздушные и океанские течения и т. д. Следовательно, вслед за температурой атмосферное давление будет испытывать аналогичные колебания. Распределение атмосферного давления называют барическим полем. Как всякое скалярное поле его наиболее наглядно представляют в пространстве поверхностями равных значений – изобарическими поверхностями, а на плоскости– линиями равных значений – изобарами.

Поскольку, атмосферное давление, как известно, в значительной степени зависит от температуры воздуха, температурное поле атмосферы испытывает значительные колебания в пространстве (по горизонтали и вертикали) и времени. Причин таких колебаний множество. Основными из них являются неравномерный приток тепла от Солнца, неравномерность в распределении материков и океанов по поверхности Земли, воздушные и океанские течения и т. д. Следовательно, вслед за температурой атмосферное давление будет испытывать аналогичные колебания. Распределение атмосферного давления называют барическим полем. Как всякое скалярное поле его наиболее наглядно представляют в пространстве поверхностями равных значений – изобарическими поверхностями, а на плоскости– линиями равных значений – изобарами.

Учитывая сложный характер распределения атмосферного давления, легко представить, что вся толща атмосферы Земли пронизана семейством изобарических поверхностей. Эти поверхности пересекаются с уровенными поверхностями под очень малыми углами. Линии пересечения изобарических поверхностей с уровенными (например, с уровнем моря) образуют на последних изобары, т. е. линии равного давления. На синоптических картах изобары проводят через 5 или 4 гПа. Изобарические поверхности наклонены относительно уровенных поверхностей (в том числе и к уровню моря). Вследствие этого в разных своих точках изобарическая поверхность в каждый момент находится на различных высотах над уровнем моря.

Изменчивость барического поля во времени для практических целей характеризуют величиной барической тенденции – величиной изменения давления АР за последние 3 ч перед сроком наблюдения, т. е.

∆P = Ph - Ph,

где Рh и Рhо – значения атмосферного давления в 3 и 0 часов соответственно. Барическая тенденция имеет знак, величину и характеристику. Последняя показывает скорость и характер изменения давления.

Пространственную изменчивость барического поля наиболее удобно характеризовать барическими градиентами.

Барические градиенты. Изменчивость барического поля в трехмерном пространстве характеризуется пространственным барическим градиентом – вектором, показывающим степень изменения атмосферного давления в этом пространстве (рис. 5). По числовой величине барический градиент равен производной от давления по нормали к изобарической поверхности, т. е. изменению давления на единицу расстояния в том направлении, в котором давление убывает наиболее быстро, т. е. .

На практике имеют дело не с пространственным барическим градиентом , а с его проекциями на вертикальную ось – вертикальным барическим градиентом Gz=–и горизонтальную (уровенную) поверхность – горизонтальным барическим градиентом Gr=- (см. рис. 5).

Давление меняется с высотой гораздо сильнее, чем в горизонтальном направлении, и вертикальный барический градиент Gz в десятки тысяч раз больше горизонтального Gr. Единицами измерения вертикального градиента являются гПа/100 м, а горизонтального – гПа/град (иногда вместо одного градуса меридиана–111 км – берут 100 км).

Среднегодовая величина горизонтального барического градиента составляет 1–2 гПа/111 км. Но даже эта незначительная величина его вызывает среднее ускорение частиц воздуха 0,08 см/с2, что соответствует скорости ветра 3–5 м/с через 2 ч после начала движения. В реальных условиях величина горизонтального барического градиента может значительно превышать среднее значение, особенно в циклонах – фронтальных и тропических.

Величина, обратная барическому градиенту. Называется барической ступенью. Это высота, на которую достаточно подняться (опуститься) для того, чтобы давление уменьшилось (увеличилось) на 1 гПа. Барической ступенью пользуются для приведения давления к уровню моря в случае небольших высот и вычисляют по формуле

n = (1 + άt)

При тех же условиях она составляет 8 м/гПа. Барический градиент и барическая ступень не являются константами. Они зависят от температуры и давления. Барический градиент с высотой становится все меньше, а барическая ступень все больше. При прочих равных условиях в холодном воздухе давление падает быстрее, чем в теплом, в сухом быстрее, чем во влажном.

Поскольку давление очень сильно зависит от высоты места (рис.), оно при метеорологических наблюдениях приводится к единому уровню, за который принимается условный уровень моря. Делается это на метеорологических станциях очень точно, по барометрическим формулам. Учитывается влажность воздуха и зависимость ускорения свободного падения g от широты φ и высоты z. На судне это можно сделать лишь приблизительно. За уровень моря принимается уровень моря в данном месте. Используется барическая ступень и принимается равной 8 м/гПа или 10 м/мм.рт.ст.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: