Преобразователи. Виды

Основные сведения

Основой любого эл. прибора, предназначенного для измерения неэлектрической величины (далее ИНВ), является измерительный преобразователь, используемый для преобразования измеряемой неэлектрической величины в электрическую, т.е. входной в выходную. Ипр. Могут быть как преобразователи по назначению, так и др. преобразователи с определенной функцией

Классификация преобразователей по принципу действия (т.е. по физическому явлению, которое используется для преобразования величин).

- параметрические – преобразователи, в которых измеряемая величина (далее ИВ) преобразуется в такие электрические параметры, как сопротивление R, индуктивность L, взаимная индуктивность M, емкость C. При применении необходим вспомогательный источник электроэнергии.

- генераторные - преобразователи, в которых ИНВ преобразуется в ЭДС. Сами являются источником электроэнергии, и, вспомогательный источник нужен лишь для усиления преобразовательной величины.

- 1) Реостатный - реостат, движок которого перемещается под действием измеряемой неэлектрической величины х, создавая зависимость:

R=f(x), где R – сопротивление преобразователя

Входной величиной преобразователя является линейное или угловое перемещение движка; выходной – изменение его сопротивления.

Устройство преобразования показано на рис.12.1

Он состоит из каркаса 1, на котором намотан провод 2, изготовленный из материала с высоким удельным сопротивлением, и тока съемного движка 3, укрепленного на оси 4. 5 – выводы.

Каркас с намоткой может иметь и переменное сечение (штриховая линия), тогда функция преобразования R=f(x), (где х - перемещение) является нелинейной, или каркас может быть кольцевой, тогда R=f(α) (α– угловое перемещение).

При перемещении движка вдоль каркаса на величину шага обмотки ∆x=λ сопротивление изменяется на ∆R=(dR/dx)λ, где dR/dx – производная требуемой функции преобразования R=f(x) по перемещению движка. При перемещении движка с одного витка на другой сопротивление изменяется на величину, равную сопротивлению одного витка.

Применяются в приборах для измерения линейных и угловых перемещений.

- 2) Индуктивные - предназначены для преобразования перемещения в электрический сигнал. Они являются наиболее компактными, помехоустойчивыми, надежными и экономичными Ипр.

Основными элементами индуктивного преобразователя (рис.1) являются катушка с двумя или более обмотками и размещенный внутри катушки подвижный якорь.
В зависимости от схемы расположения и подключения обмоток индуктивные преобразователи выпускаются двух основных типов:

- дифференциально-трансформаторные (рис.2) - имеют первичную обмотку и две включенные навстречу друг другу вторичные обмотки. При расположении якоря симметрично вторичным обмоткам, Va = Vb и суммарное напряжение на выводах вторичных обмоток равно нулю. При смещении якоря в каком-либо направлении, например, влево (рис.3), напряжение на одной из вторичных обмоток возрастает, а на другой - уменьшается. Это приводит к возникновению на выводах вторичных обмоток напряжения (сигнала), равного Va - Vb и пропорционального смещению якоря от положения симметрии. Данный сигнал воспринимается вторичным прибором и преобразуется в форму, наиболее удобную для восприятия человеком или средствами вычислительной техники.
При расположении якоря симметрично вторичным обмоткам, Va = Vb и суммарное напряжение на выводах вторичных обмоток равно нулю. При смещении якоря в каком-либо направлении, например, влево При подаче на первичную обмотку переменного напряжения Ve во вторичных обмотках наводятся напряжения той же частоты Va и Vb, направленные в каждый момент времени навстречу друг другу.

- полумостовые (рис.4) - имеют две включенные навстречу друг другу обмотки, образующие половину индуктивного моста. Вторая его половина образуется входным делителем вторичного прибора. При расположении якоря симметрично обмоткам мост сбалансирован и напряжение в его диагонали равно нулю. Смещение якоря вызывает пропорциональную разбалансировку моста. Сигнал дисбаланса преобразуется так же, как в предыдущем случае.
Индуктивный преобразователь состоит из корпуса (рис.5), в котором на направляющих качения размещен шпиндель, на переднем конце которого расположен измерительный наконечник, а на заднем - якорь. Направляющая защищена от внешних воздействий резиновым манжетом. Связанный со шпинделем якорь находится внутри закрепленной в корпусе катушки. В свою очередь, обмотки катушки электрически связаны с кабелем, закрепленным в корпусе и защищенный от перегибов конической пружиной. На свободном конце кабеля имеется разъем, служащий для подключения преобразователя к вторичному прибору. Корпус и шпиндель выполнены из закаленной нержавеющей стали. Переходник, соединяющий якорь со шпинделем состоит из титанового сплава. Пружина, создающая измерительное усилие, отцентрирована, что исключает трение при движении шпинделя.

- Индукционный – преобразователь, в котором измеряемая неэлектрическая (механическая) величина преобразуется в индуктированную “LC/ Согласно закону электро-магнитной индукции, индуктированная ЭДС Е определяется скоростью изменения магнитного потока Ф, сцепленного с катушкой из w витков: w

Применяются для измерения скорости вращения (в тахометрах), параметров вибрации - для измерений, переменных во времени линейных и угловых перемещений и ускорений (в виброметрах и акселерометрах).

- 3) Индукционные - основаны на использовании явления электромагнитной индукции, согласно чему, ЭДС в контуре определяется формулой е= dФn/dt, где Ф – магнитный поток, n – число витков контура.

Таким образом, выходной величиной является ЭДС, а входной – скорость изменения потока.

В общем случае индукционный преобразователь - это катушка с сердечником или без сердечника, находящаяся в магнитном поле. При изменении одного из параметров: катушки, сердечника, магнитного поля; в катушке наводится ЭДС.

Для катушки без сердечников уравнения для преобразования упрощаются и делится на подвиды:

- для неподвижной катушки в переменном магнитном поле

В=Вmcosωt e= ωnBmsinωt;

- для катушки, вращающейся с частотой Ω в постоянном магнитном поле с индукцией В о

e=Ω nSBosinωt,

где S- площадь катушки;

- для контура, отдельные части которого линейно перемещаются в магнитном поле В, изменяя площадь потока, сцепленная с катушкой,

e=-dФ∕dt=-nBв(dx/dt),

где в и x- размеры катушки, x изменяется, т.к. часть катушки выходит из магнитного поля. dx/dt- линейная скорость перемещения или dα/dt- угловая скорость относительно магнитного потока.

- для отрезка длиной L, движущегося в однородном магнитном поле со скоростью V так, что направления векторов L, B и V взаимно перпендикулярны, e=VBL.

Индукционные преобразователи являются генераторными преобразователями и преобразуют механическую энергию в электрическую.

Погрешности индукционных преобразователей в значительной степени зависят от условий их работы (температура, внешние механические вибрации, внешнее магнитное поле) и от режима работы. Наибольшая погрешность возникает в режиме, при котором через нагрузку течет значительный ток, т.е. при конечных значениях сопротивления нагрузки. Наименьшая погрешность – в режиме холостого хода или когда нагрузкой являются электронные устройства с большим входным сопротивлением

- 4) Емкостные - Преобразователи, в которых электрическое поле создается приложенным напряжением. Основным элементом в этих преобразователях является конденсатор переменной емкости, изменяемой входным измерительным сигналом. В дальнейшем под емкостным будем понимать преобразователь, в котором используется конденсатор с двумя или несколькими электродами). Для случая конденсатора с плоскими электродами площадью s, размещенными друг от друга на расстоянии d в среде с диэлектрической проницаемостью e, ёмкость будет

C = es/d

Рассматриваемый преобразователь на электрической стороне характеризуется приложенным напряжением и, зарядом q=CU, током I=dq/dt и энергией W=CU/2. На неэлектрической стороне преобразователь характеризуется изменением параметров, входящих в выражение для емкости, т. е.Dd, Ds, De, и силой f=dW/dx, где под х следует понимать любую из величинDd, Ds, De.

Емкостный преобразователь обратим: при приложении на электрической стороне напряжения U, на неэлектрической сторо­не возникает сила f, которая используется в приборах уравно­вешивающего преобразования как результат действия обратного преобразования, в ЭС вольтметрах и в приборах с бесконтакт­ным подвесом. В этом последнем случае элемент массы m может быть подвешен в электростатическом поле, если удовлетворяется условие f³ gm, где g - ускорение силы тяжести.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: