Поляризация волн

Весьма важное значение для распространения и приема излучаемых

электромагнитных волн имеет их поляризация (франц. — polarisation; от греч. polos — ось, полюс). Как физическое явление поляризация — ориентация в пространстве электрического и магнитного векторов электромагнитной волны. Обычно поляризацию принято характеризовать ориентацией вектора напряженности электрического поля. Плоскость, в которой лежит этот вектор, называют плоскостью поляризации. Различают линейную (вертикальную и горизонтальную), эллиптическую и круговую поляризацию. В пределах поля тяжести Земли в каналах радиотехнических систем обычно используют вертикальную (вектор поля параллелен силе тяжести) или горизонтальную линейную поляризацию.

Можно достаточно условно объяснить процесс поляризации радиоволны по аналогии с механическими колебаниями натянутой и возбужденной музыкальной струны. Натянутая струна соответствующим возбуждением (отводом ее, например, пальцами) на одном конце приводится в колебательное состояние, представляющим собой механическую волну. Созданная волна распространяется вдоль струны и может быть зарегистрирована на другом ее конце. Такую механическую волну можно упрощенно представить как модель радиоволны (или световой волны), которая движется по пространству от источника электромагнитных колебаний к приемнику (регистратору). Натянутая струна может быть возбуждена по-разному: отклонение струны можно произвести или в вертикальной, или в горизонтальной плоскости. Когда речь идет о радиоволне, излучаемой антенной передающего устройства, то в первом случае можно говорить об аналоге вертикальной, а во втором случае — об аналоге горизонтальной поляризации волны.

Для обычного радиоприемника (стоящего после антенны) на другом конце линии связи это тонкое различие в свойствах потока электромагнитных колебаний не существенно. Приемник не реагирует на плоскость поляризации радиоволны, а регистрирует только ее мощность (в модели это степень отклонения струны); он не различает горизонтальную и вертикальную поляризацию. Однако имеются элементы, которые реагируют на поляризацию электромагнитных колебаний. Их называют поляризационными фильтрами. В случае со струной таким упрощенным аналогом фильтра может служить горизонтальная (для горизонтально колеблющейся струны) или вертикальная (для вертикально колеблющейся струны) прорезь в картоне, поставленном перед человеческим глазом перпендикулярно направлению распространения механической волны. Поляризационный фильтр, поставленный в заданном положении относительно направления распространения электромагнитной волны, становится радиопрозрачным лишь для определенного вида поляризации.

Если горизонтальная и вертикальная компоненты возбуждения волны появляются в определенной временной последовательности, то это приводит к круговой поляризации электромагнитных (или световых) волн. Излучение волн с круговой поляризацией может быть представлено в виде суммы двух волн с линейными поляризациями, ориентированными перпендикулярно друг к другу.

Использование волн с различной поляризацией позволяет передавать сигналы на близких частотах или одной частоте и эффективно разделять их при приеме. Управляя поляризатором дистанционно, можно выбирать сигналы, передаваемые с определенной поляризацией. В основном применяют поляризаторы двух типов: электромагнитные (ферритовые) и механические. Их электрические характеристики приблизительно одинаковы. Отсутствие в электромагнитном поляризаторе движущихся частей предполагает его большую надежность. В то же время механические поляризаторы обладают несколько более низким коэффициентом шума.

При распространении радиоволн вдоль земной поверхности возможно также их отражение от Земли. Аналогично тому, как световые волны отражаются от окружающих предметов, так и излученные радиоволны отражаются от поверхности Земли. Радиоволны, распространяющиеся в непосредственной близости от поверхности Земли, в радиотехнике называют земными или поверхностными волнами (поверхностными лучами). Существенное влияние на распространение радиоволн различных диапазонов оказывает также земная атмосфера (от греч. atmos — пар и sphdira —- шар). Окружающую Землю атмосферу принято делить на три характерных слоя: тропосферу, стратосферу и ионосферу.

Тропосфера (от греч. tropos — поворот) представляет собой нижний слой атмосферы, простирающийся до высот 10...20 км. Тропосфера неоднородна по своим электрическим свойствам, которые определяются атмосферным давлением, температурой и влажностью и меняются при изменении метеоусловий. Кроме того, воздушные течения интенсивно перемешивают газы тропосферы, что приводит к созданию локальных неоднородностей. Все это существенно влияет на распространение радиоволн в тропосфере.

Слой атмосферы, лежащий выше тропосферы и располагающийся на высотах до 50 км, называют стратосферой (от лат. stratum — слой). Плотность газов в ней значительно меньше, чем в тропосфере. С точки зрения электрических свойств стратосфера является практически однородной средой, и волны распространяются в ней прямолинейно со скоростью света и без существенных потерь.

Над стратосферой (высота до 20 000 км) располагается ионосфера (от греч. ion — идущий) — верхние, ионизированные слои атмосферы, которые образуются под воздействием космического излучения и ультрафиолетовых лучей Солнца. В результате ионизации молекул воздуха возникают положительные ионы газа и свободные электроны. Чем больше концентрация свободных электронов, тем сильнее влияют они на распространение радиоволн.

Число свободных электронов, содержащихся в 1 м3 воздуха атмосферы, называют концентрацией и обозначают N3, эл/м3. Концентрация электронов в различных слоях ионосферы меняется по высоте. На малых высотах от поверхности Земли она невелика, так как недостаточна энергия ионизации. На больших высотах концентрация свободных электронов невелика вследствие малой плотности газа в атмосфере. На высотах 300...400 км концентрация свободных электронов в ионосфере максимальна. Изменение плотности атмосферы с увеличением расстояния от Земли и сложная зависимость ее температуры от высоты приводят к тому, что в результате ионизации в ионосфере образуются четыре ярко выраженных слоя: D, E, F1 и F2.

Ионосферный слой D расположен на высотах 60...90 км над поверхностью Земли. Слой представляет собой нерегулярное образование ионосферы и практически существует только в дневные часы, когда велика интенсивность солнечного ионизирующего излучения. На высотах 100... 120 км от поверхности Земли находится ионосферный слой Е (слой Кеннелли-Хевисайда). В зависимости от времени года и суток изменяется лишь концентрация свободных электронов в этом слое. Днем слой Е располагается несколько ниже, а ночью — значительно выше, что связано с изменениями уровня солнечного потока. Слои F1 и F2 ионосферы занимают области на высотах от 120 до 450 км от поверхности Земли. Обычно их рассматривают как один слой F, имеющий наибольшую концентрацию свободных электронов в ионосфере.

Рис 2.3 - Суточная концентрация электронов в слоях ионосферы


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: