Работа и энергия

§11. Энергия, работа, мощность

Энергия — универсальная мера различ­ных форм движения и взаимодействия. С различными формами движения мате­рии связывают различные формы энергии: механическую, тепловую, электромагнит­ную, ядерную и др. В одних явлениях форма движения материи не изменяется (например, горячее тело нагревает холод­ное), в других — переходит в иную фор­му (например, в результате трения меха­ническое движение превращается в тепло­вое). Однако существенно, что во всех случаях энергия, отданная (в той или иной форме) одним телом другому телу, равна энергии, полученной последним телом.

Изменение механического движения тела вызывается силами, действующими на него со стороны других тел. Чтобы

количественно характеризовать процесс обмена энергией между взаимодействую­щими телами, в механике вводится по­нятие работы силы.

Если тело движется прямолинейно и на него действует постоянная сила F, которая составляет некоторый угол а с на­правлением перемещения, то работа этой силы равна произведению проекции силы Fs на направление перемещения (Fs = Fcosa), умноженной на перемещение точки приложения силы:

A = Fss = Fs cosa. (11.1)

В общем случае сила может изменять­ся как по модулю, так и по направлению, поэтому формулой (11.1) пользоваться не­льзя. Если, однако, рассмотреть элемен­тарное перемещение dr, то силу F можно считать постоянной, а движение точки ее

приложения — прямолинейным. Элемен­тарной работой силы F на перемещении d r называется скалярная величина

= F d r = F cosa• ds=Fsds,

где а — угол между векторами F и d r; ds = |d r | — элементарный путь; Fs — про­екция вектора F на вектор d r (рис. 13).

Работа силы на участке траектории от точки 1 до точки 2 равна алгебраической сумме элементарных работ на отдельных бесконечно малых участках пути. Эта сум­ма приводится к интегралу

Для вычисления этого интеграла надо знать зависимость силы Fs от пути s вдоль траектории 12. Пусть эта зависимость представлена графически (рис. 14), тогда искомая работа А определяется на графи­ке площадью закрашенной фигуры. Если, например, тело движется прямолинейно, сила F=const и a=const, то получим

где s — пройденный телом путь (см. также формулу (11.1)).

Из формулы (11.1) следует, что при a<p/2 работа силы положительна, в этом случае составляющая F s совпадает

по направлению с вектором скорости дви­жения v (см. рис. 13). Если a>p/2, то работа силы отрицательна. При a = p/2 (сила направлена перпендикулярно пере­мещению) работа силы равна нулю.

Единица работы — джоуль (Дж): 1 Дж — работа, совершаемая силой в 1 Н на пути в 1 м (1 Дж = 1 Н•м).

Чтобы охарактеризовать скорость со­вершения работы, вводят понятие мощ­ности:

N=da/dt. (11.3)

За время dt сила F совершает работу F d r, и мощность, развиваемая этой силой, в данный момент времени

N= F d r /dt= Fv

т. е. равна скалярному произведению век­тора силы на вектор скорости, с которой движется точка приложения этой силы; N — величина скалярная.

Единица мощности — ватт (Вт): 1 Вт — мощность, при которой за время 1 с совершается работа в 1 Дж (1 Вт = 1 Дж/с).

Кинетическая и потенциальная энергии

Кинетическая энергия механической системы — это энергия механического движения этой системы.

Сила F, действуя на покоящееся тело и вызывая его движение, совершает рабо­ту, а энергия движущегося тела возраста­ет на величину затраченной работы. Таким образом, работа dA силы F на пути, кото­рый тело прошло за время возрастания скорости от 0 до v, идет на увеличение кинетической энергии dT тела, т. е.

dA= dT.

Используя второй закон Ньютона F =md v /dt

и умножая обе части равен­ства на перемещение d r, получим

F d r =m(d v /dt)dr=dA

Таким образом, тело массой т, движущее­ся со скоростью v, обладает кинетической энергией

Т = тv2/2. (12.1)

Из формулы (12.1) видно, что кинети­ческая энергия зависит только от массы и скорости тела, т. е. кинетическая энергия системы есть функция состояния ее дви­жения.

При выводе формулы (12.1) предпола­галось, что движение рассматривается в инерциальной системе отсчета, так как иначе нельзя было бы использовать за­коны Ньютона. В разных инерциальных системах отсчета, движущихся друг отно­сительно друга, скорость тела, а следова­тельно, и его кинетическая энергия будут неодинаковы. Таким образом, кинетиче­ская энергия зависит от выбора системы отсчета.

Потенциальная энергия механиче­ская энергия системы тел, определяемая их взаимным расположением и характе­ром сил взаимодействия между ними.

Пусть взаимодействие тел осуществля­ется посредством силовых полей (напри­мер, поля упругих сил, поля гравитацион­ных сил), характеризующихся тем, что работа, совершаемая действующими сила­ми при перемещении тела из одного поло­жения в другое, не зависит от того, по какой траектории это перемещение прои­зошло, а зависит только от начального и конечного положений. Такие поля на­зываются потенциальными, а силы, дей­ствующие в них,— консервативными. Если же работа, совершаемая силой, зависит от траектории перемещения тела из одной точки в другую, то такая сила называется диссипативной; ее примером является си­ла трения.

Тело, находясь в потенциальном поле сил, обладает потенциальной энергией II. Работа консервативных сил при элемен­тарном (бесконечно малом) изменении конфигурации системы равна приращению потенциальной энергии, взятому со знаком минус, так как работа совершается за счет убыли потенциальной энергии:

dA=-dП. (12.2)

Работа d А выражается как скалярное произведение силы F на перемещение d r и выражение (12.2) можно записать в виде

F d r =-dП. (12.3)

Следовательно, если известна функция П(r), то из формулы (12.3) можно найти силу F по модулю и направлению.

Потенциальная энергия может быть определена исходя из (12.3) как

где С — постоянная интегрирования, т. е. потенциальная энергия определяется с точностью до некоторой произвольной по­стоянной. Это, однако, не отражается на физических законах, так как в них входит или разность потенциальных энергий в двух положениях тела, или производная П по координатам. Поэтому потенциаль­ную энергию тела в каком-то определен­ном положении считают равной нулю (вы­бирают нулевой уровень отсчета), а энер­гию тела в других положениях отсчитыва­ют относительно нулевого уровня. Для консервативных сил

или в векторном виде

F =-gradП, (12.4) где

(i, j, k — единичные векторы координат­ных осей). Вектор, определяемый выраже­нием (12.5), называется градиентом ска­ляра П.

Для него наряду с обозначением grad П применяется также обозначение ÑП. Ñ («набла») означает символический вектор, называе­мый оператором Гамильтона или набла-оператором:

Конкретный вид функции П зависит от характера силового поля. Например, по­тенциальная энергия тела массой т, под­нятого на высоту h над поверхностью Зем­ли, равна

П = mgh, (12.7)

где высота h отсчитывается от нулевого уровня, для которого П0 = 0. Выражение (12.7) вытекает непосредственно из того, что потенциальная энергия равна работе силы тяжести при падении тела с высоты h на поверхность Земли.

Так как начало отсчета выбирается произвольно, то потенциальная энергия может иметь отрицательное значение (ки­нетическая энергия всегда положитель­на!}. Если принять за нуль потенциальную энергию тела, лежащего на поверхности Земли, то потенциальная энергия тела, находящегося на дне шахты (глубина h'), П =-mgh'.

Найдем потенциальную энергию упругодеформированного тела (пружины). Сила упругости пропорциональна дефор­мации:

Fх упр= -kx,

где Fxупр проекция силы упругости на ось х; kкоэффициент упругости (для пружины — жесткость), а знак минус ука­зывает, что Fx упр направлена в сторону, противоположную деформации х.

По третьему закону Ньютона, дефор­мирующая сила равна по модулю силе упругости и противоположно ей направле­на, т. е.

Fx=-Fx упр=kx Элементарная работа dA, совершаемая силой Fxпри бесконечно малой деформации dx, равна

dA = Fx dx = kxdx,

а полная работа

идет на увеличение потенциальной энергии пружины. Таким образом, потенциальная энергия упругодеформированного тела

П =kx2/2.

Потенциальная энергия системы, подо­бно кинетической энергии, является функ­цией состояния системы. Она зависит толь­ко от конфигурации системы и ее положе­ния по отношению к внешним телам.

Полная механическая энергия систе­мы — энергия механического движения и взаимодействия:

Е = Е+П,

т. е. равна сумме кинетической и потен­циальной энергий.

Закон сохранения энергии

Закон сохранения энергии — результат обобщения многих экспериментальных данных. Идея этого закона принадлежит М. В. Ломоносову (1711 —1765), изложив­шему закон сохранения материи и движе­ния, а количественная формулировка за­кона сохранения энергии дана немецким врачом Ю. Майером (1814—1878) и не­мецким естествоиспытателем Г. Гельмгольцем (1821 — 1894).

Рассмотрим систему материальных то­чек массами m1, m 2 ,..., mn, движущихся со скоростями v 1, v 2,..., v n. Пусть F '1, F '2,..., F ' n — равнодействующие внутренних кон­сервативных сил, действующих на каждую из этих точек, a f 1, F 2,..., F n— равнодей­ствующие внешних сил, которые также будем считать консервативными. Кроме того, будем считать, что на материальные точки действуют еще и внешние некон­сервативные силы; равнодействующие этих сил, действующих на каждую из ма­териальных точек, обозначим f 1, f 2,..., fn. При v<<с массы материальных точек

постоянны и уравнения второго закона Ньютона для этих точек следующие:

Двигаясь под действием сил, точки системы за интервал времени dt соверша­ют перемещения, соответственно равные d r 1, d r 2,..., d r n. Умножим каждое из урав­нений скалярно на соответствующее перемещение и, учитывая, что dri = vidt, получим:

Сложив эти уравнения, получим

Первый член левой части равенства (13.1)

где dT есть приращение кинетической энергии системы. Второй член

равен элементарной работе внутренних и внешних консервативных сил, взятой со знаком минус, т. е. равен элементарному приращению потенциальной энергии dП системы (см. (12.2)).

Правая часть равенства (13.1) задает работу внешних неконсервативных сил,

действующих на систему. Таким образом, имеем

d(T+ П )=dA. (13.2)

При переходе системы из состояния 1 в ка­кое-либо состояние 2

т. е. изменение полной механической энер­гии системы при переходе из одного со­стояния в другое равно работе, совершен­ной при этом внешними неконсервативны­ми силами. Если внешние неконсерватив­ные силы отсутствуют, то из (13.2) следует, что

d(Т+П) = 0,

откуда

Т+П = E=const, (13.3)

т. е. полная механическая энергия системы сохраняется постоянной. Выражение (13.3) представляет собой закон сохране­ния механической энергии: в системе тел, между которыми действуют только кон­сервативные силы, полная механическая энергия сохраняется, т. е. не изменяется со временем.

Механические системы, на тела кото­рых действуют только консервативные си­лы (внутренние и внешние), называются консервативными системами. Закон сохра­нения механической энергии можно сфор­мулировать так: в консервативных систе­мах полная механическая энергия сохра­няется.

Закон сохранения механической энер­гии связан с однородностью времени, т. е. инвариантностью физических зако­нов относительно выбора начала отсчета времени. Например, при свободном паде­нии тела в поле сил тяжести его скорость и пройденный путь зависят лишь от на­чальной скорости и продолжительности свободного падения тела и не зависят от того, когда тело начало падать.

Существует еще один вид систем — диссипативные системы, в которых меха­ническая энергия постепенно уменьшается за счет преобразования в другие (немеха-нические) формы энергии. Этот процесс получил название диссипации (или рассе­яния) энергии. Строго говоря, все системы в природе являются диссипативными.

В консервативных системах полная механическая энергия остается постоян­ной. Могут происходить лишь превраще­ния кинетической энергии в потенциаль­ную и обратно в эквивалентных количе­ствах, так что полная энергия остается неизменной. Поэтому, как указывает Ф. Энгельс, этот закон не есть просто за­кон количественного сохранения энергии, а закон сохранения и превращения энер­гии, выражающий и качественную сторо­ну взаимного превращения различных форм движения друг в друга. Закон со­хранения и превращения энергии — фун­даментальный закон природы, он справед­лив как для систем макроскопических тел, так и для систем микротел.

В системе, в которой действуют также неконсервативные силы, например силы трения, полная механическая энергия системы не сохраняется. Следовательно, в этих случаях закон сохранения механи­ческой энергии несправедлив. Однако при «исчезновении» механической энергии всегда возникает эквивалентное количест­во энергии другого вида. Таким образом, энергия никогда не исчезает и не появля­ется вновь, она лишь превращается из одного вида в другой. В этом и заключает­ся физическая сущность закона сохране­ния и превращения энергии — сущность неуничтожимости материи и ее движения.

Удар абсолютно упругих и неупругих тел

Примером применения законов сохране­ния импульса и энергии при решении ре­альной физической задачи является удар абсолютно упругих и неупругих тел.

Удар (или соударение) — это столкно­вение двух или более тел, при котором взаимодействие длится очень короткое время. Исходя из данного определения, кроме явлений, которые можно отнести к ударам в прямом смысле этого слова(столкновения атомов или биллиардных шаров), сюда можно отнести и такие, как удар человека о землю при прыжке с трамвая и т. д. При ударе в телах воз­никают столь значительные внутренние силы, что внешними силами, действующи­ми на них, можно пренебречь. Это по­зволяет рассматривать соударяющиеся те­ла как замкнутую систему и применять к ней законы сохранения.

Тела во время удара претерпевают деформацию. Сущность удара заключает­ся в том, что кинетическая энергия относи­тельного движения соударяющихся тел на короткое время преобразуется в энергию упругой деформации. Во время удара име­ет место перераспределение энергии меж­ду соударяющимися телами. Наблюдения показывают, что относительная скорость тел после удара не достигает своего пре­жнего значения. Это объясняется тем, что нет идеально упругих тел и идеально глад­ких поверхностей. Отношение нормальных составляющих относительной скорости тел после и до удара называется коэффици­ентом восстановления e:

e = v'n/vn.

Если для сталкивающихся тел e=0, то такие тела называются абсолютно неупру­гими, если e=1 —абсолютно упругими.

На практике для всех тел 0<e<1 (например, для стальных шаров e»0,56, для шаров из слоновой кости e»0,89, для свинца e»0). Однако в не­которых случаях тела можно с большой точностью рассматривать либо как абсо­лютно упругие, либо как абсолютно не­упругие.

Прямая, проходящая через точку со­прикосновения тел и нормальная к повер­хности их соприкосновения, называется линией удара. Удар называется централь­ным, если тела до удара движутся вдоль прямой, проходящей через их центры масс. Мы будем рассматривать только центральные абсолютно упругие и абсо­лютно неупругие удары.

Абсолютно упругий удар столкнове­ние двух тел, в результате которого в обо­их взаимодействующих телах не остается никаких деформаций и вся кинетическая энергия, которой обладали тела до удара, после удара снова превращается в кинети­ческую энергию

.

Для абсолютно упругого удара вы­полняются закон сохранения импульса и закон сохранения кинетической энергии.

Обозначим скорости шаров массами m 1и m 2 до удара через v1 и v2, после удара — через v'1 и v'2 (рис. 18). При пря­мом центральном ударе векторы скоростей шаров до и после удара лежат на прямой линии, соединяющей их центры. Проекции векторов скорости на эту линию равны модулям скоростей. Их направления учтем знаками: положительное значение припи­шем движению вправо, отрицательное — движению влево.

При указанных допущениях законы сохранения имеют вид

Произведя соответствующие преобра­зования в выражениях (15.1) и (15.2), по­лучим

Решая уравнения (15.3) и (15.5), находим

Разберем несколько примеров.

Проанализируем выражения (15.8) и (15.9) для двух шаров различных масс:

а) m 1 =m 2. Если второй шар до удара висел неподвижно (v 2=0)(рис. 19), то после удара остановится первый шар (v'1=0), а второй будет двигаться с той же скоростью и в том же направлении, в котором двигался первый шар до удара (v' 2 = v 1 );

б) m 1> m 2.

Первый шар продолжает двигаться в том же направлении, как и до удара, но с меньшей скоростью (v' 1 <v 1 ). Скорость второго шара после удара боль­ше, чем скорость первого после удара (v'2>v'1) (рис.20);

в) m 1< m2. Направление движения первого шара при ударе изменяется — шар отскакивает обратно. Второй шар движется в ту же сторону, в которую двигался первый шар до удара, но с меньшей скоростью, т.е. v' 2 <v 1(рис. 21);

г) m 2>> m 1(например, столкновение шара со стеной). Из уравнений (15.8) и (15.9) следует, что v' 1 =-v 1, v' 2 »2 m1v1/m2 » 0.

2) При m 1= m 2 выражения (15.6) и (15.7) будут иметь вид

v' 1 =v 2, v' 2 =v 1,

т. е. шары равной массы «обмениваются» скоростями.

Абсолютно неупругий удар столкно­вение двух тел, в результате которого тела объединяются, двигаясь дальше как единое целое.

Продемонстрировать абсолют­но неупругий удар можно с помощью ша­ров из пластилина (глины), движущихся навстречу друг другу (рис. 22).

Если массы шаров m1и m2, их скоро­сти до удара v1 и v2, то, используя закон сохранения импульса, можно записать

Если шары движутся навстречу друг другу, то они вместе будут продолжать двигаться в ту сторону, в которую двигал­ся шар, обладающий большим импульсом. В частном случае если массы шаров равны (m 1 =m 2 ), то

v = (v1+v2)/2.

Выясним, как изменяется кинетиче­ская энергия шаров при центральном аб­солютно неупругом ударе. Так как в процессе соударения шаров между ними дей-ствуют силы, зависящие не от самих деформаций, а от их скоростей, то мы имеем дело с силами, подобными силам трения, поэтому закон сохранения механи­ческой энергии не должен соблюдаться. Вследствие деформации происходит «по­теря» кинетической энергии, перешедшей в тепловую или другие формы энергии. Эту «потерю» можно определить по раз­ности кинетической энергии тел до и после удара:

Если ударяемое тело было первона­чально неподвижно (v 2 = 0), то

Когда m 2 >>m 1(масса неподвижного тела очень большая), то v<<v 1 и почти вся кинетическая энергия тела при ударе пере­ходит в другие формы энергии. Поэтому, например, для получения значительной де­формации наковальня должна быть мас­сивнее молотка. Наоборот, при забивании гвоздей в стену масса молотка должна быть гораздо большей (m 1 >>m 2 ), тогда v»v 1и практически вся энергия затрачи­вается на возможно большее перемещение гвоздя, а не на остаточную деформацию стены.

Абсолютно неупругий удар — пример того, как происходит «потеря» механиче­ской энергии под действием диссипативных сил.

Механика твердого тела

§ 16. Момент инерции

При изучении вращения твердого тела пользуются понятием момента инерции. Моментом инерции системы (тела) отно­сительно оси вращения называется физи­ческая величина, равная сумме произведе­ний масс n материальных точек системы на квадраты их расстояний до рассматри­ваемой оси:

В случае непрерывного распределения масс эта сумма сводится к интегралу

где интегрирование производится по всему объему тела. Величина r в этом случае есть функция положения точки с коорди­натами х, у, z.

В качестве примера найдем момент инерции однородного сплошного цилиндра высотой Л и радиусом R относительно его геометрической оси (рис.23). Разобьем

цилиндр на отдельные полые концентриче­ские цилиндры бесконечно малой толщины dr с внутренним радиусом rи внешним — r+dr. Момент инерции каждого полого цилиндра dJ = r2dm (так как dr<<r, то считаем, что расстояние всех точек ци­линдра от оси равно r), где dm — масса всего элементарного цилиндра; его объем 2prhdr. Если r — плотность материала, то dm= r• 2prhdr и dJ = 2prr3dr. Тогда мо­мент инерции сплошного цилиндра

но так как p R'2h — объем цилиндра, то его масса m = pR2hr, а момент инерции

J = 1/2R2.

Если известен момент инерции тела относительно оси, проходящей через его центр масс, то момент инерции относи­тельно любой другой параллельной оси определяется теоремой Штейнера: момент инерции тела J относительно любой оси вращения равен моменту его инерции Jc относительно параллельной оси, про­ходящей через центр масс С тела, сло­женному с произведением массы mтела на квадрат расстояния а между осями: J = Jc + ma2. (16.1)

Таблица 1

В заключение приведем значения мо­ментов инерции (табл. 1) для некоторых тел (тела считаются однородными, т — масса тела).

Кинетическая энергия вращения

Рассмотрим абсолютно твердое тело (см. § 1), вращающееся около неподвиж­ной оси z, проходящей через него (рис. 24). Мысленно разобьем это тело на маленькие объемы с элементарными мас­сами m 1, m 2 ,..., mn, находящиеся на рас­стоянии r 1, r 2,..., rn от оси вращения. При вращении твердого тела относительно не­подвижной оси отдельные его элементар­ные объемы массами mi, опишут окружно­сти различных радиусов ri и имеют раз­личные линейные скорости vi. Но так как мы рассматриваем абсолютно твердое те­ло, то угловая скорость вращения этих объемов одинакова:

w = v 1 /r 1 = v 2 /r 2 =... = vn/rn. (17.1)

Кинетическую энергию вращающегося тела найдем как сумму кинетических энер­гий его элементарных объемов:

или

Используя выражение (17.1), получим

где Jz — момент инерции тела относитель­но оси 2. Таким образом, кинетическая энергия вращающегося тела

Tвр = Jzw2/2. (17.2)

Из сравнения формулы (17.2) с вы­ражением (12.1) для кинетической энер­гии тела, движущегося поступательно (T= mv2/2), следует, что момент инерции вращательного движения — мера инер­тности тела. Формула (17.2) справедлива для тела, вращающегося вокруг непод­вижной оси.

В случае плоского движения тела, на­пример цилиндра, скатывающегося с на­клонной плоскости без скольжения, энер­гия движения складывается из энергии поступательного движения и энергии вра­щения:

где m — масса катящегося тела; vc ско­рость центра масс тела; J с момент инерции тела относительно оси, проходя­щей через его центр масс; w — угловая скорость тела.

Момент силы. Уравнение динамики вращательного движения твердого тела

Моментом силы F относительно неподвиж­ной точки О называется физическая вели­чина, определяемая векторным произведе­нием радиуса-вектора г, проведенного из точки О в точку А приложения силы, на силу F (рис. 25):

M = [ rF ].

Здесь М — псевдовектор, его направление совпадает с направлением поступательно­го движения правого винта при его враще­нии от г к F.

Модуль момента силы

M = Frsina= Fl, (18.1)

где a — угол между г и F; rsina = l — кратчайшее расстояние между линией дей­ствия силы и точкой Оплечо силы.

Моментом силы относительно непод­вижной оси z называется скалярная вели­чина Мz, равная проекции на эту ось век­тор а М момента силы, определенного от­носительно произвольной точки О данной оси 2 (рис.26). Значение момента Мz не зависит от выбора положения точки О на оси z.

Если ось z совпадает с направлением вектора М, то момент силы представля-

ется в виде вектора, совпадающего с осью:

М z = [ rF ]z.

Найдем выражение для работы при вращении тела (рис.27). Пусть сила F приложена в точке В, находящейся от оси вращения на расстоянии r, a — угол между направлением силы и радиусом-вектором r. Так как тело абсолютно твер­дое, то работа этой силы равна работе, затраченной на поворот всего тела. При повороте тела на бесконечно малый угол dj точка приложения В проходит путь ds= rdj, и работа равна произведению проекции силы на направление смещения на величину смещения:

dA=F sinardj. (18.2) Учитывая (18.1), можем записать dA=Mzdj,

где Fr sina = Fl =Mz — момент силы от­носительно оси z. Таким образом, работа при вращении тела равна произведению момента действующей силы на угол пово­рота.

Работа при вращении тела идет на увеличение его кинетической энергии:

dA = dT, но

Учитывая, что w=dj/dt, получим

Уравнение (18.3) представляет собой уравнение динамики вращательного дви­жения твердого тела относительно непод­вижной оси.

Можно показать, что если ось враще­ния совпадает с главной осью инерции (см. §20), проходящей через центр масс, то имеет место векторное равенство

где J — главный момент инерции тела (момент инерции относительно главной оси).

Момент импульса и закон его сохранения

При сравнении законов вращательного и поступательного движений просматрива­ется аналогия между ними, только во вра­щательном движении вместо силы «вы­ступает» ее момент, роль массы играет момент инерции. Какая же величина будет аналогом импульса тела? Ею является момент импульса тела относительно оси.

Моментом импульса (количества дви­жения) материальной точки А относитель­но неподвижной точки О называется физи­ческая величина, определяемая векторным произведением:

L = [ rp | = [ r m v ],

где r — радиус-вектор, проведенный из точки О в точку A; p = m v — импульс ма­териальной точки (рис.28); L —псевдо­вектор, его направление совпадает с на­правлением поступательного движения правого винта при его вращении от r к p. Модуль вектора момента импульса

L = rp sinalfa =mvr sinalfa= pl,

где a — угол между векторами r и p, l — плечо вектора р относительно точки О.

Моментом импульса относительно не­подвижной оси z называется скалярная величина Lz, равная проекции на эту ось вектора момента импульса, определенного относительно произвольной точки О дан­ной оси. Значение момента импульса Lz не зависит от положения точки О на оси z.

При вращении абсолютно твердого те­ла вокруг неподвижной оси z каждая от­дельная точка тела движется по окружно­сти постоянного радиуса ri с некоторой

скоростью vi. скорость vi; и импульс m ivi

перпендикулярны этому радиусу, т. е. ра­диус является плечом вектора mi v i. Поэто­му можем записать, что момент импульса отдельной частицы

Liz = тiviri (19.1)

и направлен по оси в сторону, определяе­мую правилом правого винта.

Момент импульса твердого тела отно­сительно оси есть сумма моментов импуль­са отдельных частиц:

Используя формулу (17.1) vi = wri, получим

т. е.

Lz = Jzw. (19.2)

Таким образом, момент импульса твердого тела относительно оси равен произведе­нию момента инерции тела относительно той же оси на угловую скорость.

Продифференцируем уравнение (19.2) по времени:

т. е.

dLz/dt= Mz

Это выражение — еще одна форма урав­нения (закона) динамики вращательного движения твердого тела относительно неподвижной оси: производная момента импульса твердого тела относительно оси равна моменту сил относительно той же оси.

Можно показать, что имеет место век­торное равенство

d L /dt= М. (19.3)

В замкнутой системе момент внешних сил М =0 и d L /dt=0, откуда

L = const. (19.4)

Выражение (19.4) представляет собой закон сохранения момента импульса: мо­мент импульса замкнутой системы сохра­няется, т. е. не изменяется с течением времени.

Закон сохранения момента импуль­са — фундаментальный закон природы, Он связан со свойством симметрии про­странства — его изотропностью, т. е. с ин-

вариантностью физических законов отно­сительно выбора направления осей коор­динат системы отсчета (относительно поворота замкнутой системы в простран­стве на любой угол).

Продемонстрировать закон сохране­ния момента импульса можно с помощью скамьи Жуковского. Пусть человек, сидя­щий на скамье, которая без трения враща­ется вокруг вертикальной оси, и держа­щий в вытянутых руках гантели (рис. 29), приведен во вращение с угловой скоро­стью w1. Если человек прижмет гантели к себе, то момент инерции системы умень­шится. Поскольку момент внешних сил равен нулю, момент импульса системы со­храняется и угловая скорость вращения w2 возрастает. Аналогично, гимнаст во время прыжка через голову поджимает к тулови­щу руки и ноги, чтобы уменьшить свой момент инерции и увеличить тем самым угловую скорость вращения.

Сопоставим основные величины и уравнения, определяющие вращение те­ла вокруг неподвижной оси и его поступа­тельное движение (табл.2).

Свободные оси. Гироскоп

Для того чтобы сохранить положение оси вращения твердого тела с течением време­ни неизменным, используют подшипники, в которых она удерживается. Однако существуют такие оси вращения тел, кото­рые не изменяют своей ориентации в про­странстве без действия на нее внешних сил. Эти оси называются свободными ося­ми (или осями свободного вращения). Можно доказать, что в любом теле су­ществуют три взаимно перпендикулярные оси, проходящие через центр масс тела, которые могут служить свободными осями (они называются главными осями инерции тела). Например, главные оси инерции однородного прямоугольного параллеле­пипеда проходят через центры противопо­ложных граней (рис. 30). Для однородно­го цилиндра одной из главных осей инер­ции является его геометрическая ось, а в качестве остальных осей могут быть две любые взаимно перпендикулярные оси, проведенные через центр масс в плоско­сти, перпендикулярной геометрической оси цилиндра. Главными осями инерции шара

являются любые три взаимно перпендику­лярные оси, проходящие через центр масс.

Для устойчивости вращения большое значение имеет, какая именно из свобод­ных осей служит осью вращения.

Можно показать, что вращение во­круг главных осей с наибольшим и наи­меньшим моментами инерции оказывается устойчивым, а вращение около оси со средним моментом — неустойчивым. Так, если подбросить тело, имеющее форму параллелепипеда, приведя его одновре­менно во вращение, то оно, падая, будет устойчиво вращаться вокруг осей 1 и 2 (рис. 30).

Если, например, палочку подвесить за один конец нити, а другой конец, закреп­ленный к шпинделю центробежной маши­ны, привести в быстрое вращение, то па­лочка будет вращаться в горизонтальной плоскости около вертикальной оси, пер­пендикулярной оси палочки и проходящей через ее середину (рис.31). Это и есть свободная ось вращения (момент инерции при этом положении палочки максималь­ный). Если теперь палочку, вращающуюся вокруг свободной оси, освободить от внеш­них связей (аккуратно снять верхний ко­нец нити с крючка шпинделя), то положе­ние оси вращения в пространстве в тече­ние некоторого времени сохраняется. Свойство свободных осей сохранять свое положение в пространстве широко при­меняется в технике. Наиболее интересны в этом плане гироскопы — массивные од­нородные тела, вращающиеся с большой угловой скоростью около своей оси сим­метрии, являющейся свободной осью.

Рассмотрим одну из разновидностей гироскопов — гироскоп на кардановом подвесе (рис.32 ). Дискообразное тело — гироскоп — закреплено на оси АА, кото­рая может вращаться вокруг перпендику­лярной ей горизонтальной оси ВВ, кото­рая, в свою очередь, может поворачивать­ся вокруг вертикальной оси DD. Все три оси пересекаются в одной точке С, являю­щейся центром масс гироскопа и остаю­щейся неподвижной, а ось гироскопа мо­жет принять любое направление в про­странстве. Силами трения в подшипниках всех трех осей и моментом импульса колец пренебрегаем.

Так как трение в подшипниках мало, то, пока гироскоп неподвижен, его оси можно придать любое направление. Если начать гироскоп быстро вращать (напри­мер, с помощью намотанной на ось вере­вочки) и поворачивать его подставку, то ось гироскопа сохраняет свое положение в пространстве неизменной. Это можно объяснить с помощью основного закона динамики вращательного движения. Для свободного вращающегося гироскопа сила тяжести не может изменить ориентацию его оси вращения, так как эта сила при­ложена к центру масс (центр вращения С совпадает с центром масс), а момент силы тяжести относительно закрепленного центра масс равен нулю. Моментом сил трения мы также пренебрегаем. Поэтому если момент внешних сил относительно его закрепленного центра масс равен нулю, то, как следует из уравнения (19.3), L =

= const, т. е. момент импульса гироскопа сохраняет свою величину и направление в пространстве. Следовательно, вместе с ним сохраняет свое положение в про­странстве и ось гироскопа.

Чтобы ось гироскопа изменила свое направление в пространстве, необходимо, согласно (19.3), отличие от нуля момента внешних сил. Если момент внешних сил, приложенных к вращающемуся гироскопу относительно его центра масс, отличен от нуля, то наблюдается явле­ние, получившее название гироскопичес­кого эффекта. Оно состоит в том, что под действием пары сил F, приложенной к оси вращающегося гироскопа, ось ги­роскопа (рис. 33) поворачивается вокруг прямой О3О3, а не вокруг прямой О 2 О 2, как это казалось бы естественным на первый взгляд (O 1 O 1и О 2 О 2лежат в плоскости чертежа, а О3О3 и силы F перпендикуляр­ны ей).

Гироскопический эффект объясняется следующим образом. Момент М пары сил F направлен вдоль прямой О 2 О 2. За время dt момент импульса L гироскопа получит приращение d L = M dt (направление d L совпадает с направлением М) и станет рав­ным L' = L +d L. Направление вектора L ' совпадает с новым направлением оси вра­щения гироскопа. Таким образом, ось вра­щения гироскопа повернется вокруг пря­мой О3О3. Если время действия силы мало, то, хотя момент сил М и велик, изменение момента импульса d L гироскопа будет также весьма малым. Поэтому кратковременное действие сил практически не при­водит к изменению ориентации оси враще­ния гироскопа в пространстве. Для ее изменения следует прикладывать силы в течение длительного времени.

Если ось гироскопа закреплена под­шипниками, то вследствие гироскопиче­ского эффекта возникают так называемые гироскопические силы, действующие на опоры, в которых вращается ось гироско­па. Их действие необходимо учитывать при конструировании устройств, содержа­щих быстровращающиеся массивные со­ставные части. Гироскопические силы имеют смысл только во вращающейся си­стеме отсчета и являются частным случаем кориолисовой силы инерции (см. §27).

Гироскопы применяются в различных гироскопических навигационных приборах (гирокомпас, гирогоризонт и т. д.). Другое важное применение гироскопов — поддер­жание заданного направления движения транспортных средств, например судна (авторулевой) и самолета (автопилот) и т. д. При всяком отклонении от курса вследствие каких-то воздействий (волны, порыва ветра и т. д.) положение оси ги­роскопа в пространстве сохраняется. Сле­довательно, ось гироскопа вместе с рама­ми карданова подвеса поворачивается от­носительно движущегося устройства. По­ворот рам карданова подвеса с помощью определенных приспособлений включает рули управления, которые возвращают движение к заданному курсу.

Впервые гироскоп применен француз­ским физиком Ж. Фуко (1819—1868) для доказательства вращения Земли.

Деформации твердого тела

Рассматривая механику твердого тела, мы пользовались понятием абсолютно твердо­го тела. Однако в природе абсолютно твердых тел нет, так как все реальные тела под действием сил изменяют свою форму и размеры, т. е. деформируются.

Деформация называется упругой,если после прекращения действия внешних сил тело принимает первоначальные размеры и форму. Деформации, которые сохраня-

ются в теле после прекращения действия внешних сил, называются пластическими (или остаточными). Деформации реально­го тела всегда пластические, так как они после прекращения действия внешних сил никогда полностью не исчезают. Однако если остаточные деформации малы, то ими можно пренебречь и рассматривать уп­ругие деформации, что мы и будем де­лать.

В теории упругости доказывается, что все виды деформаций (растяжение или сжатие, сдвиг, изгиб, кручение) могут быть сведены к одновременно происходя­щим деформациям растяжения или сжа­тия и сдвига.

Рассмотрим однородный стержень длиной l и площадью поперечного сечения S (рис. 34), к концам которого приложены направленные вдоль его оси силы f 1 и F 2 (F 1 =F 2 =F), в результате чего длина стер­жня меняется на величину D l. Естествен­но, что при растяжении D l положительно, а при сжатии — отрицательно.

Сила, действующая на единицу пло­щади поперечного сечения, называется на­пряжением:

s=F/S. (21.1)

Если сила направлена по нормали к по­верхности, напряжение называется нор­мальным, если же по касательной к по­верхности — тангенциальным.

Количественной мерой, характеризую­щей степень деформации, испытываемой телом, является его относительная дефор­мация. Так, относительное изменение дли­ны стержня (продольная деформация)

e=D l / l, (21.2) относительное поперечное растяжение

(сжатие)

e' = Dd/d, где d -— диаметр стержня.

Деформации e и e ' всегда имеют раз­ные знаки (при растяжении D l положи­тельно, a Ad отрицательно, при сжатии D l отрицательно, a Ad положительно). Из опыта вытекает взаимосвязь e и e':

e'=-me,

где m — положительный коэффициент, за­висящий от свойств материала, называе­мый коэффициентом Пуассона.

Английский физик Р. Гук (1635— 1703) экспериментально установил, что для малых деформаций относительное уд­линение e и напряжение s прямо про­порциональны друг другу:

s = Ee, (21.3)

где коэффициент пропорциональности Е называется модулем Юнга. Из вы­ражения (21.3) видно, что модуль Юнга определяется напряжением, вызывающим относительное удлинение, равное единице. Из формул (21.2), (21.3) и (21.1) вы­текает, что

где k — коэффициент упругости. Выраже­ние (21.4) также задает закон Гука, со­гласно которому удлинение стержня при упругой деформации пропорционально действующей на стержень силе.

Деформации твердых тел подчиняются закону Гука до известного предела. Связь между деформацией и напряжением пред­ставляется в виде диаграммы напряже­ний, которую мы качественно рассмотрим для металлического образца (рис. 35). Из рисунка видно, что линейная зависимость s (e), установленная Гуком, выполняется

лишь в очень узких пределах до так на­зываемого предела пропорциональности (sп). При дальнейшем увеличении напря­жения деформация еще упругая (хотя за­висимость s (e) уже не линейна) и до пре­дела упругости (sу) остаточные деформа­ции не возникают. За пределом упругости в теле возникают остаточные деформации и график, описывающий возвращение тела в первоначальное состояние после прекра­щения действия силы, изобразится не кри­вой ВО, а параллельной ей — CF. Напря­жение, при котором появляется заметная остаточная деформация (~=0,2 %), назы­вается пределом текучести (sт) — точка С на кривой. В области CD деформация возрастает без увеличения напряжения, т. е. тело как бы «течет». Эта область называется областью текучести (или об­ластью пластических деформаций). Мате­риалы, для которых область текучести значительна, называются вязкими, для ко­торых же она практически отсутствует — хрупкими. При дальнейшем растяжении (за точку D) происходит разрушение тела. Максимальное напряжение, возникающее в теле до разрушения, называется преде­лом прочности (sp).

Диаграмма напряжений для реальных твердых тел зависит от различных факто­ров. Одно и то же твердое тело может при кратковременном действии сил проявлять себя как хрупкое, а при длительных, но слабых силах является текучим.

Вычислим потенциальную энергию упругорастянутого (сжатого) стержня, кото­рая равна работе, совершаемой внешними силами при деформации:

где х — абсолютное удлинение стержня, изменяющееся в процессе деформации от 0 до D l. Согласно закону Гука (21.4), F=kx=ESx/l. Поэтому

т. е. потенциальная энергия упругорастянутого стержня пропорциональна квадра­ту деформации (D l )2.

Деформацию сдвига проще всего осу­ществить, если взять брусок, имеющий форму прямоугольного параллелепипеда, и приложить к нему силу Ftau (рис.36), касательную к его поверхности (нижняя часть бруска закреплена неподвижно). Относительная деформация сдвига опре­деляется из формулы

tgg = Ds/h,

где Ds — абсолютный сдвиг параллельных слоев тела относительно друг друга; h — расстояние между слоями (для малых уг­лов tgg»g).

Тяготение. Элементы теории поля

§ 22. Законы Кеплера.

Закон всемирного тяготения

Еще в глубокой древности было замечено, что в отличие от звезд, которые неизменно сохраняют свое взаимное расположение в пространстве в течение столетий, плане­ты описывают среди звезд сложнейшие траектории. Для объяснения петлеобраз­ного движения планет древнегреческий ученый К. Птоломей (II в. н.э.), считая Землю расположенной в центре Вселен­ной, предположил, что каждая из планет движется по малому кругу (эпициклу), центр которого равномерно движется по большому кругу, в центре которого на­ходится Земля. Эта концепция получила название птоломеевой геоцентрической системы мира и при поддержке католиче­ской церкви господствовала почти полто­ры тысячи лет.

В начале XVI в. польским астрономом Н. Коперником (1473—1543) обоснована гелиоцентрическая система (см. § 5), сог­ласно которой движения небесных тел объясняются движением Земли (а также других планет) вокруг Солнца и суточным вращением Земли. Теория и наблюдения Коперника воспринимались как занима­тельная фантазия.

К началу XVII столетия большинство ученых убедилось, однако, в справедливо­сти гелиоцентрической системы мира. И. Кеплер (1571 — 1630), обработав и уточнив результаты многочисленных на­блюдений датского астронома Т. Браге (1546—1601), изложил законы движения планет:

1. Планеты движутся по эллипсам, в одном из фокусов которого находится Солнце.

2. Радиус-вектор планеты за равные промежутки времени описывает одинако­вые площади.

3. Квадраты периодов обращения пла­нет вокруг Солнца относятся как кубы больших полуосей их орбит.

Впоследствии И. Ньютон, изучая дви­жение небесных тел, на основании законов

Кеплера и основных законов динамики открыл всеобщий закон всемирного тя­готения: между любыми двумя материаль­ными точками действует сила взаимного притяжения, прямо пропорциональная произведению масс этих точек (m 1 и m 2) и обратно пропорциональная квадрату расстояния между ними (r2):

F=Gm1m2/r2. (22.1)

Эта сила называется гравитационной (или силой всемирного тяготения). Силы тяго­тения всегда являются силами притяже­ния и направлены вдоль прямой, проходя­щей через взаимодействующие тела. Ко­эффициент пропорциональности G на­зывается гравитационной постоянной.

Закон всемирного тяготения установ­лен для тел, принимаемых за материальные точки, т. е. для таких тел, размеры кото­рых малы по сравнению с расстоянием между ними. Если же размеры взаимодей­ствующих тел сравнимы с расстоянием между ними, то эти тела надо разбить на точечные элементы, подсчитать по форму­ле (22.1) силы притяжения между всеми попарно взятыми элементами, а затем гео­метрически их сложить (проинтегриро­вать), что является довольно сложной ма­тематической задачей.

Впервые экспериментальное доказа­тельство закона всемирного тяготения для земных тел, а также числовое определение гравитационной постоянной G проведено английским физиком Г. Кавендишем (1731 —1810). Принципиальная схема опыта Кавендиша, применившего крутиль­ные весы, представлена на рис. 37. Легкое коромысло А с двумя одинаковыми шари-

ками массой m = 729 г подвешено на уп­ругой нити В. На коромысле С укреплены на той же высоте массивные шары массой М=158 кг. Поворачивая коромысло С во­круг вертикальной оси, можно изменять расстояние между шарами с массами m и M. Под действием пары сил, при­ложенных к шарам m со стороны шаров M, коромысло А поворачивается в гори­зонтальной плоскости, закручивая нить В до тех пор, пока момент сил упру­гости не уравновесит момента сил тяготе­ния. Зная упругие свойства нити, по изме­ренному углу поворота можно найти воз­никающие силы притяжения, а так как массы шаров известны, то и вычислить значение G.

Значение G, приводимое в табли­цах фундаментальных физических пос­тоянных, принимается равным 6,6720•10-11Н•м2/кг2, т.е. два точечных тела массой по 1 кг каждое, находящиеся на расстоянии 1 м друг от друга, при­тягиваются с силой 6,6720-10-11Н. Очень малая величина G показывает, что сила гравитационного взаимодействия может быть значительной только в случае боль­ших масс.

§ 23. Сила тяжести и вес. Невесомость

На любое тело, расположенное вблизи Земли, действует сила тяготения F, под влиянием которой, согласно второму за­кону Ньютона, тело начнет двигаться с ускорением свободного падения g. Та­ким образом, в системе отсчета, связанной с Землей, на всякое тело массой m дей­ствует сила

P = m g,

называемая силой тяжести.

Согласно фундаментальному физиче­скому закону — обобщенному закону Га­лилея, все тела в одном и том же поле тяготения падают с одинаковым ускорени­ем. Следовательно, в данном месте Земли ускорение свободного падения одинаково для всех тел. Оно изменяется вблизи по­верхности Земли с широтой в пределах от

9,780 м/с2 на экваторе до 9,832 м/с2 на полюсах. Это обусловлено суточным вра­щением Земли вокруг своей оси, с одной стороны, и сплюснутостью Земли — с другой (экваториальный и полярный ра­диусы Земли равны соответственно 6378 и 6357 км). Так как различие значе­ний g невелико, ускорение свободного па­дения, которое используется при решении практических задач, принимается равным 9,81 м/с2.

Если пренебречь суточным вращением Земли вокруг своей оси, то сила тяжести и сила гравитационного тяготения равны между собой:

P = mg=F=GmM/R2,

где M — масса Земли; R — расстояние между телом и центром Земли. Эта форму­ла дана для случая, когда тело находилось на поверхности Земли.

Пусть тело расположено на высоте h от поверхности Земли, r 0 радиус Зем­ли, тогда

P=GmM/(R0 + h)2,

т. е. сила тяжести с удалением от поверхности Земли уменьшается.

В физике применяется также понятие веса тела. Весом тела называют силу, с которой тело вследствие тяготения к Земле действует на опору (или подвес), удерживающую тело от свободного паде­ния. Вес тела проявляется только в том случае, если тело движется с ускорением, отличным от g, т. е. когда на тело кроме силы тяжести действуют другие силы. Со­стояние тела, при котором оно движется только под действием силы тяжести, на­зывается состоянием невесомости.

Таким образом, сила тяжести действу­ет всегда, а вес появляется только в том случае, когда на тело кроме силы тяжести действуют еще другие силы, вследствие чего тело движется с ускорением а, отлич­ным от g. Если тело движется в поле тяготения Земли с ускорением a¹ g, то к этому телу приложена дополнительная сила N, удовлетворяющая условию

N + P = m a.

Тогда вес тела

Р' =- N =P-m a =m g -m a = m(g - a),

т. е. если тело покоится или движется прямолинейно и равномерно, то а =0 и P' = m g. Если тело свободно дви­жется в поле тяготения по любой траекто­рии и в любом направлении, то а = g и Р' = 0, т. е. тело будет невесомым. Например, невесомыми являются тела, на­ходящиеся в космических кораблях, сво­бодно движущихся в космосе.

Поле тяготения и его напряженность

Закон тяготения Ньютона определяет за­висимость силы тяготения от масс взаимо­действующих тел и расстояния между ни­ми, но не показывает, как осуществляется это взаимодействие. Тяготение принадле­жит к особой группе взаимодействий. Си­лы тяготения, например, не зависят от того, в какой среде взаимодействующие тела находятся. Тяготение существует и в вакууме.

Гравитационное взаимодействие меж­ду телами осуществляется с помощью по­ля тяготения, или гравитационного поля. Это поле порождается телами и является формой существования материи. Основное свойство поля тяготения заключается в том, что на всякое тело массой т, вне­сенное в это поле, действует сила тяготе­ния, т. е.

F = m g. (24.1)

Вектор g не зависит от m и называется напряженностью поля тяготения. Напря­женность поля тяготения определяется си­лой, действующей со стороны поля на материальную точку единичной массы, и совпадает по направлению с действую­щей силой. Напряженность есть силовая характеристика поля тяготения.

Поле тяготения называется однород­ным, если его напряженность во всех точ­ках одинакова, и центральным, если во всех точках поля векторы напряженности направлены вдоль прямых, которые пере­секаются в одной точке (А), неподвижной по отношению к какой-либо инерциальной системе отсчета (рис.38).

Для графического изображения сило­вого поля используются силовые линии (линии напряженности). Силовые линии выбираются так, что вектор напряженно­сти поля действует по касательной к сило­вой линии.

Работа в поле тяготения. Потенциал поля тяготения

Рассмотрим, чему равна работа, соверша­емая силами поля тяготения при переме­щении в нем материальной точки мас­сой т. Вычислим, например, какую надо затратить работу для удаления тела мас­сой т от Земли. На расстоя­нии R (рис. 39) на данное тело действует сила

F=GmM/R2.

При перемещении этого тела на расстоя­ние dR затрачивается работа

Знак минус появляется потому, что сила и перемещение в данном случае противо­положны по направлению (рис.39).

Если тело перемещать с расстояния R 1

до R 2, то затрачивается работа

Из формулы (25.2) вытекает, что за­траченная работа в поле тяготения не зависит от траектории перемещения, а оп­ределяется лишь начальным и конечным положениями тела, т. е. силы тяготения действительно консервативны, а поле тя­готения является потенциальным


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: