Основные среды, действующие на строительные материалы

Федеральное агентство по образованию

Саратовский государственный технический университет

Долговечность

СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ

Конспект лекций

для студентов специальности 290600 (270106.65)

«Производство строительных материалов, изделий и конструкций»

Саратов – 2010.


Содержание

1. Основные среды, действующие на строительные материалы ………. 3

2. Выветривание природных каменных материалов ……………………. 5

3. Портландцемент, состав и химическая стойкость

цементного камня ………………………………………………….. 7

4. Цементы повышенной водо- и сульфатостойкости …………………. 10

Сульфатостойкий портландцемент ………………………….. 10

Пуццолановый портландцемент …………………………….. 10

Шлакопортландцемент ……………………………………….. 11

5. Химическая стойкость и виды коррозии бетона …………………….. 12

Коррозия 1 вида (коррозия выщелачивания) ……………….. 12

Коррозия 2 вида (кислотная и магнезиальная коррозия) …… 13

Коррозия 3 вида (сульфатная и солевая коррозия) …………. 15

6. Механизм электрохимической коррозии металлов …………………. 17

7. Коррозия стальной арматуры в бетоне ………………………………. 20

8. Способы защиты от коррозии и повышения долговечности

металлических и железобетонных конструкций ………………… 23

Защита от коррозии металлических пролетных

строений мостов …………………………………………… 23

Защита железобетона от коррозии …………………………… 26

Бетонополимеры ………………………………………………. 29

Полимербетоны ………………………………………………. 31

9. Долговечность асфальтобетона ……………………………………… 33

10. Долговечность древесины и способы защиты ее

от гниения и возгорания ………………………………………….. 36

11. Химическая стойкость полимерных материалов …………………. 39

Виды, основные свойства и химическая стойкость

термопластов ……………………………………………… 39

Виды, основные свойства и химическая стойкость

реактопластов …………………………………………….. 42

Строение и коррозия полимеров ……………………………. 45

Список литературы …………………………………………………… 48

ПРИЛОЖЕНИЕ. Вопросы к контрольным заданиям по вариантам …. 48

ВВЕДЕНИЕ

Обеспечение долговечности строительных материалов и конструкций является одной из основных проблем повышения эффективности строительства. Многообразие номенклатуры материалов и условий их эксплуатации в промышленных зданиях, транспортных сооружениях и других объектах, в том числе и специального строительства, требует детального и глубокого изучения химической стойкости этих материалов под воздействием твёрдых, газообразных или жидких агрессивных сред. Знание причин и механизма разрушения различных материалов при эксплуатации их в агрессивных средах даёт возможность грамотно и эффективно осуществлять меры защиты и повышения долговечности строительных конструкций и изделий.

ОСНОВНЫЕ СРЕДЫ, ДЕЙСТВУЮЩИЕ НА СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ

Основными средами, действующими на строительные материалы, являются воздух и вода. Содержащийся в воздухе углекислый газ часто агрессивно воздействует на материалы, а водяные пары воздуха участвуют во всех коррозионных процессах, конденсируясь на поверхности материала в виде капельно-жидкой влаги.

Особо агрессивным является воздух в некоторых промышленных районах, так как содержит многочисленные газы и пары, выделяемые в процессе производства.

Наиболее распространенными и в то же время наиболее агрессивными являются хлор и хлористый водород, окислы азота, сернистый газ, сероводород, аммиак. Все газы, за исключением аммиака и кислорода, являются кислыми или кислотообразующими. Образование из них кислот происходит только при наличии в воздухе или на поверхности конструкций капельно-жидкой влаги (тумана или конденсата). Поэтому повышенная влажность воздуха, особенно в сочетании с высокой загазованностью среды, является фактором, усиливающим протекание коррозионных процессов на поверхности строительных материалов.

Степень влагонасыщения материала весьма серьезно влияет на интенсивность и скорость развития коррозии. При относительно низкой влажности (до 60%) кислые газы практически не действуют разрушающе на бетон, а в отдельных случаях даже уплотняют его в поверхностном слое. Металл в сухом воздухе также практически не коррозирует. Увеличение влажности воздуха до 69-75% увеличивает агрессивность газовых сред, а при относительной влажности воздуха от 75 до 95% скорость коррозии строительных материалов под воздействием различных газов резко возрастает.

При наличии в воздухе гигроскопической пыли величина опасной, с точки зрения процессов коррозии, влажности снижается на 10-20%. Адсорбируя влагу из воздуха и осаждаясь на поверхности конструкций, такая пыль создает у поверхности зону повышенной влажности, а при наличии кислых газов - и зону повышенного кислотосодержания.

Действие газа на пористые материалы (бетон, кирпич, древесину и т.п.) отмечается не только на поверхности, что характерно для металла и плотных камней, но и в более глубоких слоях. В пористых материалах газы могут поглощаться не только химическим, но и адсорбционным путем. При увеличении влажности материала поглощенный адсорбционным путем газ образует раствор кислоты, который, взаимодействуя с составляющими цементного камня или кирпича, приводит увлажненный материал к быстрому разрушению.

Агрессивные свойства воды определяет степень ее минерализации, жесткости, а также кислотности или щелочности. Обычно вода рек и озер имеет слабощелочную реакцию. Общее содержание солей в речных водах не превышает 0,3-0,5 г/л. Грунтовые и подземные естественные воды обычно содержат минеральные соли и другие примеси.

Промышленные стоки или воды могут содержать самые различные примеси, в том числе кислоты и щелочи. Следует отметить, что и совершенно чистая, неминерализованная или мягкая вода может быть агрессивной в отношении пористых цементных бетонов, вызывая выщелачивание извести и других растворимых солей.

Кроме химического взаимодействия, вода разрушающе действует на пористые камни, бетоны и древесину, попадая в микрополости и растрескивая структурные составляющие материалов.

Разрушения, вызываемые действием растворенных в воде кислот, щелочей или солей, весьма интенсивны и разнообразны. Характер и причины этих разрушений применительно к отдельным строительным материалам будут рассмотрены далее.

Кислоты являются наиболее агрессивными по отношению к металлам, обычным бетонам на щелочной основе, силикатному кирпичу и осадочным горным породам (известнякам, доломитам и т.п.). Керамические изделия, кирпич и бетоны на жидком стекле хорошо сопротивляются действию кислот, но быстро разрушаются щелочами.

Агрессивность кислот определяется их природой, концентрацией, рН водных растворов, наличием окислительных свойств и температурой среды. Разрушительное действие кислот и кислых газов определяется также растворимостью образуемых продуктов коррозии при взаимодействии кислот с металлами или бетонами.

Концентрированные растворы щелочей, особенно при нагреве, разрушающе действуют на некоторые металлы, камни и бетоны. Причина разрушения объясняется тем, что в их состав входят кислые включения в виде кремнезема, а разложение их щелочами приводит к образованию трещин и потере прочности.

Действие на металлы, бетоны, керамику и пластмассы различных солей менее агрессивно, чем кислот. Разрушающее действие растворов солей чаще всего определяется их способностью взаимодействовать с водой (подвергаться гидролизу) и образовывать водородные (кислые) или гидроксильные (щелочные) ионы. В дальнейшем разрушение материала идет так же, как при действии кислот или щелочей.

Действие органических веществ — сахаров, масел и растворителей — на отдельные материалы своеобразно. Для цементных бетонов агрессивными считаются растворы сахара, фруктовые соки и т.п. При взаимодействии их с известью цементного камня могут образовываться растворимые сахариты кальция. По отношению к цементному бетону весьма агрессивными являются также многие смазочные и растительные окисляющиеся масла. При этом степень разрушения тем больше, чем меньше плотность бетона.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: