Метод Ньютона (метод касательных)

Метод Ньютона является наиболее эффективным методом решения нелинейных уравнений. Пусть корень , т. е. . Предполагаем, что функция непрерывна на отрезке и дважды непрерывно дифференцируема на интервале . Положим . Проведем касательную к графику функции в точке (рис. 1.8).

Уравнение касательной будет иметь вид: .

Первое пересечение получим, взяв абсциссу точки пересечения этой касательной с осью , т. е. положив : .

Аналогично поступим с точкой , затем с точкой и т. д., в результате получим последовательность приближений , причем

. (1.6)

Рисунок 1.8 - Касательная к графику функции в точке

Формула (1.6) является расчетной формулой метода Ньютона.

Метод Ньютона можно рассматривать как частный случай метода простых итераций, для которого .

Сходимость метода. Сходимость метода Ньютона устанавливает следующая теорема.

Теорема. Пусть – простой корень уравнения и в некоторой окрестности этого корня функция дважды непрерывно дифференцируема. Тогда найдется такая малая – окрестность корня , что при произвольном выборе начального приближения из этой окрестности итерационная последовательность, определенная по формуле (1.6) не выходит за пределы этой окрестности и справедлива оценка:

, (1.7)

где .

Сходимость метода Ньютона зависит от того, насколько близко к корню выбрано начальное приближение.

Выбор начального приближения. Пусть – отрезок, содержащий корень. Если в качестве начального приближения выбрать тот из концов отрезка, для которого , то итерации (1.6) сходятся, причем монотонно. Рисунок 8 соответствует случаю, когда в качестве начального приближения был выбран правый конец отрезка: (Здесь ).

Погрешность метода. Оценка (1.7) неудобна для практического использования. На практике пользуются следующие оценки погрешности:

. (1.8)

Критерий окончания. Оценка (1.8) позволяет сформулировать следующий критерий окончания итераций метода Ньютона. При заданной точности вычисления нужно вести до тех пор, пока не будет выполнено неравенство

.

Пример 1.3. Вычислить методом Ньютона отрицательный корень уравнения с точностью до 0,0001. Проведя отделение корня, можно убедиться, что корень локализован на интервале . В этом интервале и . Так как и , то за начальное приближение можно принять .

Таблица 1.3 – Расчётные значения

-11   -5183 0,6662
-10,3336 307,3 4276,8 0,0718
-10,2618 3,496 4185,9 0,0008
-10,261 0,1477 - -

. Поэтому .


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: