Соотношение полосы пропускания и пропускной способности

Связь между полосой пропускания линии и ее пропускной способностью вне зависимости от принятого способа физического кодирования установил Клод Шеннон:

С = F log 2 (1 + Рс/Рш)-

Здесь С — пропускная способность линии в битах в секунду, F — ширина поло­сы пропускания линии в герцах, Рс — мощность сигнала, Рш — мощность шума.

Из этого соотношения следует, что теоретического предела пропускной способ­ности линии с фиксированной полосой пропускания не существует. Однако на практике такой предел имеется. Действительно, повысить пропускную способ­ность линии можно за счет увеличения мощности передатчика или же уменьше­ния мощности шума (помех) в линии связи. Обе эти составляющие поддаются изменению с большим трудом. Повышение мощности передатчика ведет к зна­чительному увеличению его габаритов и стоимости. Снижение уровня шума тре­бует применения специальных кабелей с хорошими защитными экранами, что весьма дорого, а также снижения шума в передатчике и промежуточной аппара­туре, чего достичь весьма не просто. К тому же влияние мощностей полезного сигнала и шума на пропускную способность ограничено логарифмической зави­симостью, которая растет далеко не так быстро, как прямо-пропорциональная. Так, при достаточно типичном исходном отношении мощности сигнала к мощ­ности шума в 100 раз повышение мощности передатчика в два раза даст только 15 % увеличения пропускной способности линии.

Близким по сути к формуле Шеннона является другое соотношение, полученное Найквистом, которое также определяет максимально возможную пропускную способность линии связи, но без учета шума в линии:

С = 2F log 2 М.

Здесь М — количество различимых состояний информационного параметра.

Если сигнал имеет два различимых состояния, то пропускная способность равна удвоенному значению ширины полосы пропускания линии связи (рис. 8.15, а). Если же передатчик использует более двух устойчивых состояний сигнала для кодирования данных, то пропускная способность линии повышается, так как за один такт работы передатчик передает несколько битов исходных данных, напри­мер 2 бита при наличии четырех различимых состояний сигнала (рис. 8.15, б).

                               
                           
                            W  
               
         
   
                            W  
     
   
Рис. 8.15. Повышение скорости передачи за счет дополнительных состояний сигнала


Хотя в формуле Найквиста наличие шума в явном виде не учитывается, косвенно его влияние отражается в выборе количества состояний информационного сиг­нала. Для повышения пропускной способности линии связи следовало бы уве­личивать количество состояний, но на практике этому препятствует шум на ли­нии. Например, пропускную способность линии, сигнал которой показан на рис. 8.15, б, можно увеличить еще в два раза, применив для кодирования данных не 4, а 16 уровней. Однако если амплитуда шума время от времени превышает разницу между соседними уровнями, то приемник не сможет устойчиво распо­знавать передаваемые данные. Поэтому количество возможных состояний сигна­ла фактически ограничивается соотношением мощности сигнала и шума, а фор­мула Найквиста определяет предельную скорость передачи данных в том случае, когда количество состояний уже выбрано с учетом возможностей устойчивого распознавания приемником.

Типы кабелей

Список ключевых слов: витая пара, экранированная витая пара, неэкранированная витая пара, коаксиальный кабель, «толстый» коаксиальный кабель, «тонкий» коаксиальный кабель, телевизионный кабель, волоконно-оптический кабель, мода луча, одномодовый кабель, многомодовый кабель, структурированная кабельная система.

Сегодня как для внутренней (кабели зданий), так и для внешней проводки чаще всего применяются три класса проводных линий связи:

□ витая пара;

□ коаксиальные кабели;

□ волоконно-оптические кабели.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: