Глава 6. Мегамир: современные астрофизические и космологические концепции

Астрофизика – это раздел астрономии, изучающий физические свойства небесных тел и протекающие в них и в космическом пространстве процессы. Основным методом исследования астрофизики стал спектральный анализ. Анализ спектра излучения удалённых космических объектов дал возможность определить их плотность, температуру, химический состав, наличие или отсутствие магнитного поля.

Космология – это раздел астрономии, учение о Вселенной как о едином целом и обо всей охваченной астрономическими наблюдениями области Вселенной (Метагалактике) как части целого.

Планеты Солнечной системы

Планета (от греческого aster planetes – блуждающая звезда) – небесное тело, движущееся вокруг Солнца в его гравитационном поле и светящееся отражённым солнечным светом. Масса планет слишком мала для того, чтобы внутри её могли протекать характерные для звёздных недр ядерные реакции.

Мы живём на планете Земля и вместе с ней путешествуем по орбите вокруг звезды по имени Солнце. Вокруг Солнца вращается 9 крупных небесных тел светящихся отражённым солнечным светом. Такие тела мы будем называть планетами.

Ближе всех к Солнцу располагается Меркурий, он невелик. Следом идёт Венера, по размерам почти повторяющая свою соседку Землю (~0,8 mз). Земля находится в среднем на расстоянии 149,6 млн. км от Солнца. Эта величина называется астрономической единицей (а.е.). После Земли расположен Марс. А вот что за Марсом надо сказать особо. Потому что на месте, где полагается находиться следующей планете, никакой планеты нет. Вместо неё там находится Пояс астероидов. Астероид – это небольшой каменный объект, болтающийся в космосе. Иногда он бывает из железа. А Пояс астероидов – это множество валунов, разбросанных по одной орбите. Может быть, все они и есть обломки планеты, место которой занимают. Развалилась ли планета по собственной инициативе или ей помогли, до сих пор неизвестно. Следом за поясом помещается огромный Юпитер, потом Сатурн в шляпе, то есть с кольцом. После него не различимый простым глазом Уран, далее Нептун и, наконец, маленький Плутон.

По физическим характеристикам планеты делятся на 2 группы: планеты земного типа (Меркурий, Венера, Земля, Марс) и планеты-гиганты (Юпитер, Сатурн, Уран, Нептун). О Плутоне известно очень мало, но, по-видимому, он ближе по своему строению к планетам земной группы.

В приложении 2 приведены некоторые физические характеристики планет, позволяющие установить основные различия планет-гигантов и планет земной группы. Планеты-гиганты значительно больше по размерам и массе, меньше по плотности, быстрее вращаются. Имеется ещё одно важное различие. Тепловой поток из недр Юпитера и Сатурна примерно равен по величине потоку, получаемому ими от Солнца. Тепловой поток из недр Земли пренебрежимо мал по сравнению с поступающим от Солнца, и то же самое, по-видимому, верно и для других планет земной группы. Планеты-гиганты имеют многочисленные семейства спутников. Каждое такое семейство является маленьким подобием Солнечной системы. Юпитер, Сатурн и Уран, кроме того, обладают кольцами, состоящими из множества мелких тел (обломков).

Предполагается, что планеты возникли одновременно (или почти одновременно) 4,6 млрд. лет назад из газово-пылевой туманности, имевшей форму диска, в центре которого было расположено молодое Солнце. Эта протопланетная туманность образовалась, по-видимому, вместе с Солнцем из межзвёздного вещества, плотность которого превысила критический предел. По некоторым данным (присутствие специфических изотопов в метиоритах), такое уплотнение произошло в результате относительно близкого взрыва сверхновой звезды.

Протопланетное облако было неустойчивым, оно становилось всё более плоским, твёрдые пылинки сближались, сталкивались, образовывали тела всё больших и больших размеров, и в относительно короткий срок (по разным оценкам, от 105 до 108 лет) сформировались 9 больших планет. Астероиды, кометы, метеориты являются, вероятно, остатками материала, из которого сформировались планеты.

Относительные размеры планет и Солнца

В приложении 3 представлены данные о химическом составе атмосфер Венеры, Земли, Марса и Юпитера. На Венере и Марсе основными компонентами атмосферы являются СО2 и N2, на Земле О2 и N2. Причины этого различия следующие: 1) на Земле имеется много жидкой воды, которая растворяет СО2 и переводит его в осадочные породы, 2) растительный покров Земли перерабатывает СО2 в О2. Наиболее резко от земной атмосферы отличаются атмосферы Юпитера и других планет-гигантов, которые состоят, главным образом, из водорода и гелия. Из спутников планет только Титан имеет плотную атмосферу.

Движение планет вокруг Солнца описывается законами Кеплера. Эти законы математически выводятся из закона всемирного тяготения, хотя были сформулированы на основе наблюдений за движениями планет задолго до его открытия. Плоскости эллиптических орбит всех планет лежат почти в одной плоскости (плоскости эклиптики). Все планеты обращаются вокруг Солнца в одном и том же направлении – против часовой стрелки. Все планеты и Солнце вращаются в одном направлении – вокруг своих осей. Расстояния планет до Солнца составляют некоторую прогрессию, определяемую правилом Тициуса – Боде. Именно этот факт послужил стимулом для поиска новых планет.

Итак, в состав Солнечной системы входит Солнце, 9 больших планет вместе с 44 спутниками, более 100000 астероидов (малых планет), порядка 1011 комет, а также бесчисленное множество метеорных тел. Закономерности движения планет в сочетании с делением их на две группы по физическим свойствам указывают на единое происхождение системы в целом.

6.2. Наша планета Земля

Наша планета, конечно же, является одним из основных объектов естественнонаучных концепций. Слоны и черепахи уступили место небесному телу, укрепленному в центре мироздания, затем это тело «отнесло» в сторону от центра, в котором утвердилось Солнце, затем и Солнце оказалось на периферии одной из множества галактик. На третьей по счету из девяти его планет – вот наше скромное место. Однако условия, складывавшиеся на этой планете в течение ее эволюции, оказались настолько своеобразными, что в результате на ее поверхности существуют те, кто делает попытки рационально осмыслить происходящее.

Атмосфера Земли существенно отличается от атмосфер всех планет. Первоначально она состояла из водорода, водяных паров, углекислого газа, метана, аммиака и небольших количеств гелия и неона. Атмосферы Венеры и Марса почти полностью состоят теперь из углекислого газа. На Земле же углекислый газ был удален, и это удаление шло по двум каналам. С одной стороны, химические реакции с горными породами в присутствии и при участии жидкой воды, а с другой – жизнедеятельность растений, поглощающих его и выделяющих кислород в процессе фотосинтеза. Пока кислорода не было в атмосфере Земли, ультрафиолетовое излучение Солнца достигало поверхности и способствовало протеканию химических реакций с участием углеводородов. Вода океана представляла тогда своеобразный бульон, подогреваемый вулканическим теплом, поступавшим из недр, в который поступали извергающиеся минералы и который интенсивно облучался ультрафиолетом. Полагают, что это и привело к появлению органических молекул и впоследствии к появлению жизни. Опыты, выполненные Кельвином, Юри и Миллером (США), дали дополнительные основания для этой теории. Они пропускали электрические разряды через смесь метана, водорода, аммиака и воды в течение длительного времени. В результате возникли некоторые аминокислоты – вещества, являющиеся основой строения белка.

Современная атмосфера Земли почти полностью состоит из азота (около 80%) и такого активного элемента, как кислород (около 20%). Если бы на Земле вдруг полностью исчезло явление, которое мы называем жизнью, кислород бы очень быстро исчез из атмосферы, вступив в реакцию с другими веществами. Под воздействием излучения Солнца газы атмосферы флуоресцируют – светятся и светятся преимущественно голубым цветом, что и обуславливает свечение и цвет неба Земли в дневное время. Соединение кислорода с водородом – вода – представляет собой сильнейший растворитель и покрывает 71% поверхности планеты. Одним из замечательных свойств воды является то, что, в отличие от большинства известных веществ, ее твердая фаза – лед – имеет при температуре замерзания плотность меньшую, чем жидкая вода. Поэтому замерзание водоемов начинается сверху, где зимой температура атмосферы понижается, а не со дна, и в глубине сохраняются условия, благоприятные для жизни.

Строение самой планеты – ее твердой части – по современным представлениям, выглядит следующим образом. В центре находится ядро, состоящее из тяжелого вещества – железа. Сердцевина его твердая и имеет радиус порядка 1300 км, затем идет жидкий слой толщиной порядка 2200 км. Несмотря на то, что температура в центре, вероятно, достигает 42000С, железо там находится в твердом состоянии из–за огромного давления, а его плотность более чем в 5 раз превышает плотность земной коры. Движение токопроводящего материала в жидком слое ядра ответственно за создание магнитного поля Земли. Между ядром и поверхностными слоями находится мантия – обогащенные железом породы. В этом слое давление высокое, но температура недостаточно высока для того, чтобы вещество расплавилось, поэтому мантия чрезвычайно вязкая, однако ее движения все же возможны. На самом верху – тоненький слой твердой земной коры. Под океанами кора имеет толщину всего несколько километров, под континентами – порядка 30 км, под горными массивами – до 70 км. Эти цифры совершенно ничтожны по сравнению с радиусом Земли, составляющим 6370 км. Недра Земли так же недоступны для непосредственного изучения, как и галактики. Самая глубокая скважина, бурение которой продолжается и сейчас на Кольском полуострове, достигает лишь двенадцати километров под поверхностью Земли. И строить догадки о глубинном строении недр мы можем, наблюдая землетрясения и выполняя сейсмические исследования. Последние основаны на том, что звуковые волны от взрывов распространяются с различной скоростью в породах с различной плотностью и отражаются от границ разделов слоев, имеющих разную плотность. Вещество коры распределяется на три класса пород, имеющих различное происхождение:

· изверженные (или магматические) породы появились на поверхности в результате деятельности вулканов. Примером является гранит;

· осадочные породы появились в процессе осаждения на дно океанов, причем океаны не всегда занимали то же положение, что и сейчас, и осадочые породы могут встречаться вдали от морских берегов. Примером является мел;

· метаморфические породы на протяжении геологической истории Земли подверглись воздействию высоких температур и давлений и изменили свою кристаллическую структуру. Например, известняк превращается в мрамор.

Геологическую историю Земли можно проиллюстрировать на таком примере. Пусть каждый миллион лет соответствует одной секунде условного кинофильма. Тогда продолжительность всего фильма займет 1 час 20 мин. В течение первых трех минут происходило формирование Земли из протопланеты. Затем наступает так называемый архейский период, в течение которого образовывалась кора, океаны, атмосфера. Этот период будет длиться примерно 40 минут, причем в районе тридцатой минуты на Земле зародится жизнь, хотя пока довольно примитивная – водоросли, простейшие. Начало следующему – протерозойскому периоду, который продлится около «получаса», – положило возникновение зон повышенной проницаемости земной коры, которые образовали системы разломов. Возможно, это было одной из причин выхода растений на сушу. Тогда же возникают почти все типы животных, за исключением позвоночных, – черви, моллюски. И наконец в последние 10 минут (кайнозойский период) происходит быстрый расцвет фауны, связанный с тем, что у животных выработался прочный скелет или твердая внешняя оболочка. Две последних секунды этого фильма будут содержать эпохи великих оледенений и появление человека, а вся история нашей цивилизации уложится в 1/200 часть последней секунды. Узнать все это позволяет анализ палеонтологических данных: изучение окаменевших останков животных в осадочных породах и радиоуглеродный метод датировки.

В последние 30 лет всеобщее признание получила концепция или теория тектонических плит земной коры, согласно которой в течение всей кайнозойской эры материки перемещались по поверхности планеты. Действительно, рассмотрев карту мира как разрезную картинку, можно заметить, что в целом ряде случаев – Южная Америка и Африка, Антарктида, Австралия и Индостан – границы материков удивительным образом хорошо совмещаются. Это любопытное обстоятельство было отмечено довольно давно, однако только в 1912 году А.Вегенер сделал обоснованное предположение о существовании праконтинентов, их возможном расколе и дальнейшем движении образовавшихся континентов по поверхности Земли. Но как же может двигаться материк? Понадобилось более полувека, чтобы эта теория получила признание специалистов, объяснявших особенности строения коры на основе предыдущей парадигмы, в которой основная роль отводилась вертикальным перемещениям пород и их слоев.

В 50-е годы был изучен так называемый Атлантический рифт – узкий горный хребет на дне Атлантического океана, протянувшийся с севера на юг от Арктики до Антарктиды. Его осевая линия представляет собой провал, по его сторонам имеются крутые возвышения, части которых иногда достигают поверхности океана и являются островами. Рифт является зоной повышенной вулканической активности. Исследование намагниченности горных пород вдоль склонов хребта обнаружило любопытную особенность: вдоль хребта идут полосы шириной примерно 30 км (так называемые полосовые аномалии), в которых намагниченности поочередно направлены в противоположные стороны. Это указывает на то, что магнитные полюсы Земли на протяжении ее истории неоднократно менялись местами. С другой стороны, это означает, что в результате вулканической деятельности кора вдоль рифта раздвигалась. Точные спутниковые измерения показывают, что Северная Атлантика раздвигается примерно на 1 см в год. Аналогичный регион в восточной части Тихого океана раздвигается на 5 см в год. Где же тогда сдвигаются участки коры и куда деваются, сдвинувшись? Один ответ очевиден: горные хребты на суше могут представлять собой результат столкновения плит. Но есть и другой. Помимо рифтовых возвышений на океанском дне существуют и впадины. Как правило, они расположены вдоль побережья. Самой глубокой и самой известной является Марианская впадина в юго-западной части Тихого океана. Если нанести на карту всю систему таких впадин и отметить зоны сейсмической активности, то их расположения совпадут. При этом оказывается, что эпицентры землетрясений располагаются на глубинах от нескольких километров до нескольких десятков километров. Эти значения соответствуют значениям толщины коры под океаном и материком. Можно предположить, что раздвигающаяся океаническая кора «задвигается» под континентальную. При этом образуются понижения поверхности (впадины), а, кроме того, при взаимных перемещениях возникают значительные механические напряжения, сброс которых (взаимное проскальзывание плит) и приводит к землетрясениям. Таким образом, подводные желоба имеют геологическое значение.

Реконструкция очертаний древних материков и анализ геофизических данных позволяют восстановить следующую картину. В середине кайнозоя (то есть примерно 300 млн. лет назад) на Земле существовало два материка: Гондвана и Лавразия. Гондвана состояла из сомкнутых Южной Америки, Африки, Индостана, Австралии и Антарктиды. Лавразия состояла из Северной Америки, Лабрадора и Европы. Между Гондваной и Лавразией находился океан Тетис, соединяющий современные Атлантический и Тихий океаны. Он сужался по направлению к западу, так что эти материки смыкались. Остатками Тетиса являются Средиземное и Черное моря. Существование в прошлом сухопутных путей между регионами, которые теперь принадлежат разным континентам, привело к распространению одинаковых животных на территориях, впоследствии далеко разделенных водными пространствами. При этом на вновь образующихся континентах эволюция шла по-разному. Так, травоядные сумчатые, первоначально заселявшие также и исходно смежные с Австралией территории, в самой Австралии уцелели, а в Азии были уничтожены новыми – плацентарными млекопитающими, бывшими в основном хищниками. Однако о том, что в давние времена сумчатые проживали там в изобилии, можно догадаться по останкам костей. Известен также вид гигантских морских черепах, проживающий на побережье Южной Америки, самки которых откладывают яйца на острове, расположенном в 2000 км от берега. Что заставляет их проделывать столь дальний путь, неясно, если не предположить, что в давние времена (а род этих черепах насчитывает 90 млн. лет) остров был неподалеку от места проживания черепах, а затем очень медленно отодвигался от суши в результате материкового дрейфа. Так медленно, что черепахи не могли среагировать на этот процесс.

Теория тектонических плит существенно изменила мировоззрение людей и их представление об эволюции нашей планеты. Она имеет также и практические аспекты. Мы стали лучше понимать природу землетрясений и получили возможность улучшить их прогнозирование. Зная линии разломов земной коры, вдоль которых происходит смещение плит, можно наблюдать за этим смещением, и, если оно замедляется или останавливается, это указывает на вероятность скорого сейсмического толчка. Более того, существуют проекты бурения скважин вдоль разломов, куда в качестве смазки будет закачиваться вода, что приведет к снижению амплитуды толчков. Кроме того, на основе теории тектонических плит стало более понятным распределение полезных ископаемых и источников сырья.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: