double arrow

Уровни организации живой материи. Объекты изучения в экологии

3

Уровни организации живой материи – это условное обозначение, принятое для классификации всех живых организмов на нашей планете. Живая природа Земли поистине разнообразна. Организмы могут принимать различные размеры: начиная от простейших и одноклеточных микробов, переходя к многоклеточным существам, и заканчивая самыми крупными животными на земле – китами. Эволюция на Земле происходила таким образом, что организмы развивались от простейших (в прямом смысле) к более сложным. Так, то возникая, то исчезая, новые виды совершенствовались в ходе эволюции, принимая все более причудливый облик.

Чтобы систематизировать это невероятное количество живых организмов, и были введены уровни организации живой материи. Дело в том, что, несмотря на различия во внешнем виде и в строении, все организмы живой природы имеют общие черты: они так или иначе состоят из молекул, имеют в своем составе повторяющиеся элементы, в том или ином смысле – общие функции органов; они питаются, размножаются, стареют и умирают. Иными словами, свойства живого организма, несмотря на внешние различия, схожи. Собственно, ориентируясь на эти данные, можно проследить, как проходила эволюция на нашей планете. Итак, рассмотрим уровни организации живой материи более подробно.

1) Молекулярный уровень присущ всем организмам. В рамках этого уровня происходят невидимые невооруженным глазом процессы, имеющие место в любом живом организме: синтез и распад питательных, строительных или защитных веществ. Это уровень крупных молекулярных соединений (белки, нуклеиновые кислоты и т. д.)-

2) Надмолекулярный или субклеточный. Уровень, на котором происходит структуризация молекул в органоиды клетки: клеточная мембрана, хромосомы, вакуоли, ядро и т. д

3) Клеточный. На этом уровне материя представлена в виде элементарной функциональной единицы – клетки.

4) Органно-тканевой уровень. Именно на этом уровне образуются все органы и ткани живого организма вне зависимости от их сложности: головной мозг, язык, почка и др. При этом следует иметь в виду, что ткань – совокупность клеток, объединенных общим строением и функцией. Орган – часть организма, в «обязанности» которой входит выполнение четко определенной функции.

5) Онтогенетический или организменный уровень. На этом уровне различные по функциональности органы объединяются в целостный организм. Говоря иначе, этот уровень представлен уже целостным индивидом любого вида.

6) Популяционно-видовой. Организмы или индивиды, имеющие сходное строение, функции и схожий облик и тем самым относящиеся к одному виду, включаются в одну популяцию. В биологии под популяцией понимают совокупность всех особей данного вида. В свою очередь, все они образуют генетически единую и обособленную систему. Популяция обитает в определенном месте – ареале и, как правило, не пересекается с представителями других видов. Вид, в свою очередь, представляет собой совокупность всех популяций. Живые организмы могут скрещиваться и производить потомство лишь в рамках своего вида.

7) Биоценотический. Уровень, на котором живые организмы объединяются в биоценозы – совокупность всех популяций, проживающих на конкретной территории. Принадлежность к тому или иному виду в этом случае не имеет значения.

8) Биогеоценотический. Этот уровень обусловлен образованием биогеоценозов, то есть совокупности биоценоза и неживых факторов (почва, климатические условия) в той области, где биоценоз обитает.

9) Биосферный. Уровень, объединяющий все живые организмы на планете. Таким образом, уровни организации живой материи включают в себя девять пунктов. Подобная классификация определяет существующую в современной науке систематизацию живых организмов.

Объект изучения в экологии. Экология занимается изучением организма во всей совокупности его взаимоотношений со средой. Таким образом, предметом экологии являются – популяции видов, а объектом – взаимоотношения этих популяций с живой (другие организмы) и неживой природой.

Казалось бы, этим же занимается и физиология, но, как отмечает Плантефоль: физиолог изучает организм, помещенный в искусственные условия. Эколог же рассматривает организм не в теоретически созданной среде (всегда себе подобной вплоть до отдельного фактора), а в окружающем мире, в котором действуют постоянно меняющиеся силы. Существует масса примеров несоответствия результатов, полученных в лабораторных условиях, и наблюдаемых в природе. Например, размножение диатомовых водорослей в культуре. Разумеется, приведенные факты не означают, что лабораторные исследования не представляют интереса. Напротив, они необходимы, но нельзя бездумно внедрять в природу результаты экспериментов.

Из всего вышесказанного вы согласитесь с мнением другого французского исследователя Лабейри, что экология – это все-таки наука о реальном. Это естественная наука, но вид исследуется экологией не на уровне отдельно взятой особи (особь остается объектом исследования морфологии, систематики, физиологии), а всей популяции, т.е. совокупности особей, которая занимает определенную территорию и обновляется во времени. Для выделения вида как основной структурной единицы живого вещества используются два подхода. Вид может определяться как совокупность организмов, обладающих единством морфологических признаков (морфологический вид). Другой подход базируется на особенностях биологии размножения и экологии (биологический вид). Вид – это совокупность сходных между собой особей, способных к скрещиванию с образованием плодовитого потомства и в репродуктивном отношении изолированных от других сходных совокупностей особей. Вид обладает единым геномом и ареалом. В экологическом отношении для особей одного вида характерны одни и те же взаимоотношения со средой обитания (единство ареала). Вид состоит из популяций особей.

Положение экологии в системе естественных наук обеспечивает ее теснейшую связь с биологией (систематика, зоология, ботаника, физиология, генетика и др.), географией (ландшафтоведение, биогеография, климатология, медицинская география, демография и др.), медициной (гигиена, токсикология, бактериология, эпидемиология и др.,), с социальными науками (социология, психология, лингвистика, экономика и др.), с рядом правовых (экологическое право) и естественных наук (физика, химия, математика и кибернетика).

2. Передача энергии по цепям питания. Правило 10%.

Цепь питания – перенос энергии от его источника через ряд организмов. Все живые организмы связаны между собой энергетическими отношениями, поскольку являются объектами питания других организмов. Травоядные животные (потребители первого порядка) поедают растения, первичные хищники (потребители второго порядка) поедают травоядных, вторичные хищники (потребители третьего порядка) поедают хищников помельче. Таким образом, создаются пищевые цепи из продуцентов и консументов, которые на разных этапах смыкаются с сообществом редуцентов.

Каждый из уровней питания называется трофическим уровнем. Фактически при поедании организмами друг друга по трофическим уровням переносится энергия. В каждом последующем трофическом звене количество энергии убывает. Это связано с тем, что какое-то количество энергии, поступившей в трофический уровень, всегда будет рассеиваться в виде тепла. Солнечная энергия, попадающая на фотосинтезирующие органы растений, аккумулируется во вновь образующихся органических соединениях. Эта энергия используется продуцентами по-разному. Часть ее тратится на дыхание, т.е. на биологическое окисление, часть запасается в виде вновь возникшей биомассы.

Биомасса – это масса организмов определенной группы или сообщества в целом. Некоторую долю созданной продуцентами биомассы съедают травоядные животные. Хищники потребляют травоядных животных и получают долю энергии. Большая часть энергии, полученная консументами с пищей, тратится на процессы, происходящие в клетках, а также выводится с продуктами жизнедеятельности в окружающую среду. Меньшая часть энергии идет на увеличение массы тала, рост и размножение. Часть биомассы продуцентов, не съеденная животными, отмирает, и с отмершей биомассой аккумулированная в ней энергия поступает в почву в виде растительного опада.

Растительный и животный опад (трупы, экскременты) пища редуцентов. Определенное количество энергии запасается в биомассе редуцентов, а часть рассеивается. Таким образом, энергия аккумулируется на уровне продуцентов, проходит через консументы и редуценты, входит в состав органических веществ, почвы, и рассеивается при разрушении ее разнообразных соединений. Через любую экосистемы проходит поток энергии, определенная часть которого используется каждым живым существом.

При переходе энергии с одного уровня на другой часть ее безвозвратно теряется: в виде теплового излучения (затраты на дыхание), в виде отходов жизнедеятельности. Поэтому количество высокоорганизованной энергии постоянно уменьшается при переходе с одного трофического уровня на последующий. В среднем на данный трофический уровень поступает ≈ 10 % энергии, поступившей на предыдущий трофический уровень; эта закономерность называется правилом «десяти процентов», или правилом экологической пирамиды. Поэтому количество трофических уровней всегда ограничено (4-5 звеньев), например, уже на четвертый уровень поступает только 1/1000 часть энергии от поступившей на первый уровень.

Все типы пищевых цепей всегда существуют в сообществе таким образом, что член одной цепи является также членом другой. Соединения цепей образую пищевую сеть экосистемы. Угнетение или разрушение любого звена экосистемы с неизбежностью отразится на экосистеме в целом.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  


3

Сейчас читают про: