Кіріспе. 1.Кванттық механика элементтері

Тараз 2015ж

Жоспары

І. Кіріспе

ІІ. Негізгі бөлім

1.Кванттық механика элементтері. Де Бройль толқындары

2.Гейзенберг анықталмаушылық принципі

3.Шредингер теңдеуі

ІІІ. Қорытынды

Пайдаланылған әдебиеттер

Кіріспе

Кванттық механика қазіргі заманғы физиканың негізгі теориясының бірі. Кванттық механика - микробөлшектердің (элементар бөлшектердің, атомдардың, молекулалардың) қозғалыс заңдылықтарын зерттейтін теория.

Кванттық механиканың алғашқы даму тарихын қарастыра отырып, негізгі үш кезеңді ерекше бөліп алуға болады. Бірінші кезең: XIX ғасырдың аяғы - 1912 ж. (алғашқы тәжірибелер және оларды түсіндіру әрекеттері). Екінші кезең: 1913 - 1922 ж.ж. (Бордың кванттық теориясы). Үшінші кезең: 1923 - 1927 ж. ж. (кванттық механиканың пайда болуы және дамуы).

XIX ғасырдың аяғында және XX ғасырдың басында рентгендік сәулелер, электрондар, спектрлер, радиоактивті құбылыс және т.б. физикалық құбылыстар ашылды. Осыған байланысты ғалымдар микрообьектілерді зерттеуге мүмкіндік алды. Алғашқы кванттық ұғымды енгізген неміс физигі М.Планк. 1900 жылы 14 желтоқсанда Планк «Қалыпты спектрдегі энергияның үлестірілу теориясына» деген еңбегін Немістің физикалық қоғамының мәжілісінде баяндады. Осы күнді кванттық теорияның туған күні деп есептеуге болады. Классикалық сәулелену теориясы бойынша жарық үзіліссіз түрде шығарылады. Бұл ұғым бойынша физиктер абсолют қара дененің сәулеленуінің эксперименттік қисығын түсіндіре алмады. Осы қиыншылықты жою үшін Планк, жарық үзікті түрде, яғниатомдар энергияны жеке порциялармен шығарады деп болжаған. Энергияның бір мөлшерін ол латынның квант (қанша) деген сөзімен атады. Планк гипотезасын ( ғылыми болжамын)пайдалана отырып неміс ғалымы А. Эйнштейн 1905 жылы фотоэффект құбылысын және 1907 жылы қатты денелердің жылу сыйымдылығының температураға тәуелділігін түсіндірді. 1911 жылы ағылшын физигі

Э. Резерфорд - бөлшектердің ауыр элементтер атомдарымен соқтығысуын зерттей отырып, атомның планетарлық моделін ұсынды.

Кванттық механиканың пайда болуына дейін микрообъектілерде болатын физикалық құбылыстарды классикалық физиканың (Ньютон механикасы, классикалық электрдинамика және т.б.) көмегімен түсіндіру әрекеттері болды. Бірақ эксперименттік берілгендер классикалық физиканың заңдылықтары кеңістіктің микроскопиялық аймағында орындалмайтындығын көрсетті. Мысалы, атомдар Ньютон заңдарына бағынбайды. Классикалық физика атомдардың электрмагниттік сәулеленуімен өзара әрекетін, мыстың не себепті өткізгіш, ал шынының - оқшаулағыш болатынын түсіндіре алмады. Себебі, классикалық физика заттың микроқұрылысы рөл атқармайтын құбылыстарды қарастырады. Сонымен, ХХ ғасырдың басында классикалық физика түсіндіре алмайтын эксперименттік фактілер көптеп жинақталды. Оларды тек кванттық теорияның көмегімен түсіндіруге болды.

Кванттық механиканың негіздерін құруда классикалық физикада қолданылатын бірсыпыра көрнекі және үйреншікті ұғымдардан бас тартуға тура келді. Мысалы, классикалық механикада материялық нүкте траектория бойынша қозғалса, кванттық механикада бөлшек траекториясы ұғымы жоқ.

Кванттық механика элементтері

Микробөлшектердің қозғалыс заңдылықтарын зерттейтін физиканың бөлімін кванттық механика деп атайды.

Кванттық механика, толқындық механика – микробөлшектердің (элементар бөлшектердің, атомдардың, молекулалардың, атом ядроларының) және олардың жүйелерінің (мысалы, кристаллдардың) қозғалу заңдылықтарын анықтайтын, сондай-ақ, бөлшектер мен жүйелерді сипаттайтын физикалық шамаларды макроскопиялық тәжірибеде тікелей өлшенетін шамалармен байланыстыратын теория.Ол өрістің кванттық теориясында, кванттық химияда, кванттық статистикада, т.б. қолданылады. Кванттық механика бейрелятивистік (жарық жылдамдығымен салыстырғанда төмен жылдамдықтағы с) және релятивистік (жарық жылдамдығымен салыстыруға болатын жоғары жылдамдықтағы с) болып бөлінеді.Бейрелятивистік кванттық механика (өзінің қолданылу аймағындағы Ньютон механикасы сияқты) – толық аяқталған, қайшылықтары жоқ, өз саласында кез келген есептерді шешуге мүмкіндігі бар теория. Керісінше, релятивистік кванттық механиканы мұндай теория қатарына жатқызуға болмайды. Классикалық механика кванттық механиканың жуықталған дербес түрі болып саналады.

Элементар бөлшектерді және осы бөлшектердің аз санынан тұратын денелерді микробөлшектер деп атаймыз. Француз ғалымы де Бройль жарықтың екі жақтылық қасиеті электронға да орындалады деген болжам ұсынды, яғни электронның механикалық қозғалысына толқындық қасиет сәйкес келеді және бұл толқынның ұзындығы келесі формуламен анықталады:

немесе ,

мұндағы: р - дене импульсы, -Планк тұрақтысы.

Бұл өрнек де Бройль формуласы деп аталады.

Заттардың толқындық қасиеттері. Луи де Броиль формуласы. Бұрын айтылғандай жарықтың екі жақты толқындық (интерференция, дифракция, поляризация) және эффектісі (жарықтың қысымы) қасиеті болатындығын білеміз. француз физигі Де Броиль жарық фотондары сияқты, электрондардың да толқындық қасиеті болады деген болжам айтып, электрондардың толқын ұзындығын есептеуге арналған формула берген.

Фотонның энергиясы , екінші жағынан Эйнштейннің салыстырмалы теориясы бойынша масса мен энергияның арасында мынандай байланыс бар.

; ; ;

Сонда электронның импульсі

;

–электронның жылдакмдығы. Егер электрон потенциалдар айырымы электр өрісінде үдемелі қозғалса ; ;

Де Броиль толқын ұзындығы кристалдардың атомдық жазықтықтарының арақашықтығы мен шамалас болады. Олай болса, кристалдық ток Бройль толқындары үшін дифракциялық тор қызметін атқарады. Сондықтан электрондар шоғы кристалдан өткенде электрондардың дифракциясын бақылауға болады.

Ал бөлшектің кинетикалық энергиясы екенін ескерсек, онда де Бройльдің толқын ұзындығы кинетикалық энергия арқылы келесі түрде өрнектеледі:

.

Потенциалдар айырмасы -ға тең үдетуші электр өрісінен өткен электронның энергиясы:

Соңғы өрнекті ескере отырып де Бройль формуласын келесі түрде өрнектеуге болады:

,

мұндағы: .

.

Американ ғалымы Томсон жұқа металл фольгалардан шапшаң электрондарды өткізгенде экранда дифракциялық көрініс бақылады.

Бұл дифракциялық көрініс Брэгг-Вульф шартымен сипатталады:

Кванттық механикада кез-келген микробөлшектің қозғалысына толқындық қозғалыс сәйкес келеді және бұл толқындық қозғалыс сол бөлшектің де Бройльдық толқын ұзындығымен сипатталады.

де Бройль толқынының амплитудасының квадраты микробөлшектің кеңістіктің берілген нүктесінде болу ықтималдығын анықтайды. Микробөлшектің кеңістіктің берілген нүктеде болу ықтималдығын анықтау үшін кеңістік пен уақыттың функциясы толқындық функция енгізілген.

функциясы толқындық функция немесе пси функция деп аталады.

Пси функциясының модулінің квадраты микробөлшектің кеңістіктің берілген нүктесінде болу ықтималдығын анықтайды.

Толқындық функция келесі шартты қанағаттандыруы қажет:

.

Бұл шарт нормалану шарты деп аталады.

1927 ж Американ физиктері Дэвиссон мен Джермер электрондар шоғын никель кристалына түсіріп, одан шағылған электрондардың дифракция құбылысын байқаған. Осы тәжірибе Де Броиль болжамының дұрыстығын дәлелдеп, электрондардың толқындық қасиеті болатындығын көрсетті. Осындай электрондардың диффракциясын орыс ғалымдары Тартаковский, Фабрикант тәжірибе жүзінде бақылады. Жалпы алған толқындық қасиет тек электрондарға ғана тән емес, басқада кез келген (протон, нейтрон т.б.) бөлшектерге де тән қасиет екендігін көреміз.

Гейзенберг анықталмаушылық принципі

Гейзенбергтің анықталмаушылық принципі. Классикалық механикада қозғалатын кез-келген материалдық нүктенің (бөлшектің) белгілі бір траекториясы және кез келген уақытта оның координаты мен импульсін дәл анықтауға болады. Ал, көзге көрінбейтін ұсақ бөлшектер (микробөлшектер) болса, өзінің толқындық егер де координат мәнін, дәл өлшесек, онда оны өлшеудегі кеткен қателік болады, онда болады, яғни бұл жағдайда импульстің мәнін өлшегенде кететін қателік болады. Ал, егер импульстің мәнін дәл өлшесек, онда координаттың белгілі бір мәні болмайды . Мысалы, атом ішінде қозғалатын электронды қарастырайық; яғни оның координатын анықтамақ болайық. Атомның радиусы м, сонда атом ішіндегі электронның координатын анықтаудағы кететін қате м болады. Сонда электронның жылдамдығын анықтаудағы кететін қате; болады.

Бұл электронның атомның ішіндегі жылдамдығына тең екен. Сонда атом ішіндегі электронның жылдамдығын анықтаудағы қате сол жылдамдықтың өзіне тең болып отыр. Сондықтан атом ішінде электронның белгілі бір жылдамдықпен қозғалатын тұйықталған орбитасы бар деуіміз дұрыс емес.

Сонымен қатар кванттық теорияның негізінде уақыт пен энергияның анықтамаушылықтарды қарастырылады.

Осыдан белгілі бір жүйенің (бөлшектің) орташа өмір сүру уақыты дәл белгілі болса, онда ол жүйені сипаттайтын энергияны анықтауға болмайды. Керісінше –белгілі болса болады толқындық қасиеті болу есебінен классикалық бөлшектен ерекше айырмашылығы болады. Микробөлшектердің бір айырмасы, олардың траекториясы болмайды. Сондықтан бір мезгілде олардың координаттары мен импульстерін дәл анықтауға мүмкіншілік болмайды. Олай болса микробөлшектерді, макробөлшектерге тән шамалар мен тек жуықтап қана сипаттауға болады.

Осы пікірге байланысты толқындық механикада мынандай принцип бар: «Электронның (немесе кез-келген ұсақ бөлшектердің) орынын (координатын) және импульсін бір мезгілде дәл өлшеуге болмайды. Мысалы: фотонның х осі бойынша координатын өлшегендегі қателік болып, оның жылдамдығын өлшегендегі қателік болса, онда мына шарт орындалу керек: ;

; ; мұнда –импульсті өлшеуге кеткендегі қателік.

Осы теңсіздіктерді бірінші рет неміс физигі Гейзенберг ұсынған болатын. Сондықтан оны Гейзенбергтің анықталмаушылық теңсіздіктері деп атайды.

Зат бөлшектерін сипаттайтын әрі толқындық, әрі корпускалалық екі жақтылы универсалды теория деген де Бройль идеясын көптеген тәжірибелер растайды. Анықталмаушылық принцип классикалық физика заңдарын микробөлшектердің күйін сипаттау үшін қолдануға болмайтындығын көрсетті. Сондықтан микробөлшектердің қасиеттерін зерттеу үшін ХХ-ғасырдың бас кезінде жаңа теория, кванттық механика теориясы қалыптаса бастады. Бұл теория ұсақ бөлшектердің қозғалу заңдары мен өзара әсерлесуі олардың толқындық қасиеттеріне байланысты екендігін көрсетті.

Өзара байланысқан шамаларды анықтаудағы қателіктердің көбейтіндісі Планк тұрақтысынан кіші болмайды.

Кез-келген А және В байланысқан шамалары үшінГейзенбергтің анықталмаушылық принципі келесі түрде жазылады:

.

Координата мен импульс үшінГейзенбергтің анықталмаушылық принципі.

Координата мен импульсті анықтаудағы қателіктердің көбейтіндісі Планк тұрақтысынан кіші болмайды, яғни

Энергия мен уақыт үшінГейзенбергтің анықталмаушылық принципі:

,

мұндағы: -Планк тұрақтысы.

Шредингер теңдеуі

Релятивистік емес кванттық механиканың негізгі теңдеуін неміс ғалымы Шредингер алды. Сондықтан бұл теңдеу Шредингер теңдеуі деп аталады.

мұндағы: , - күштік өрістегі бөлшектің потенциалдық энергиясы.

- функциясына қойылатын шарттар:

1. - функциясы шекті, үздіксіз, бір мәнді болу қажет;

2. - функциясы уақыт пен координаттар бойынша дифференциалы үздіксіз болуы қажет;

3. - функциясының модулінің квадратының интегралы болу керек және бұл интеграл шекті болу керек.

Микроәлемде өтетін көптеген физикалық құбылыстарды қарастырғанда, мысалы атомдағы электронның күйін зерттегенде уақытқа тәуелсіз Шредингер теңдеуін қарастыру қажет болады. Ол үшін Шредингер жалпы теңдеуінен уақытты қысқарта отырып, Шредингердің стационар теңдеуі алынады.

Шредингер теңдеуіндегі пси функциясының шешімін келесі түрде іздейік: ,

мұндағы: айнымалысы координаталардың, - уақыттың функциясы болып табылады. Айнымалыларды бөле отырып Шредингердің стационар теңдеуі алынады

.

Шредингер теңдеуін қанағаттандыратын функциясын осы теңдеудің меншікті функциясы деп атайды, ал осы теңдеуді қанағаттандыратын толық энергияның мәнін меншікті мән деп атайды.

Еркін электрон қозғалысы

Бөлшектің еркін қозғалысы кезінде оның толық энергиясы кинетикалық энергиясына тең болады. Бұл жағдай үшін Шредингер теңдеуі келесі түрде жазылады:

.

Бұл теңдеудің шешімі

мұндағы: А, В- тұрақты шамалар.

Еркін электронның қозғалысына монохроматты жазық де Бройль толқыны сәйкес келеді.

Потенциал “шұңқырдағы” электрон

Бір өлшемді шексіз терең потенциалды шұңқырдағы электронның қозғалысын қарастырайық.

Электронның шұңқыр ішіндегі және тыс жердегі потенциалдық энергиясы келесі мәндерді қабылдайды ( ), ( ) Потенциалды өрісте қозғалатын электронның қозғалысы үшін Шредингер теңдеуін қолдана отырып, алатынымыз

Электронның потенциалды шұңқырдан тыс жерде табылу ықтималдылығы нольге тең. Сол себепті терең потенциалды шұңқырдағы электронның қозғалысын зерттейтін есеп төменде көрсетілген шекті шарттары бар келесі дифферециалдық теңдеуді шешуге келеді

,

мұндағы: толқындық функция үшін шекті шарттар.

белгілей отырып, теңдеудің шешімін келесі түрде жазамыз:

шартынан және екені алынады.

шартынан және ( ) екені

алынады.

Жоғарыдағы теңдеулерден -ні қысқарта отырып электронның энергиясының меншікті мәнін табамыз

,

мұндағы:

Потенциалдық шұңқырдағы электронның толық энергиясы тек дискретті мәндерді қабылдайды. Кванттық механикада дискреттік мәндерді қабылдайтын шамаларды квантталатын шамалар деп атайды.

Сондай-ақ потенциалды шұңқырдағы электронның меншікті функциясы келесі түрде жазылады:

.

Гармониялық осцилятор

Квазисерпімді күштің әсерінен бір өлшемді тербеліс жасайтын бөлшекті гармониялық осцилятор деп аталады. Бұл бөлшектің потенциалдық энергиясы келесі формуламен анықталды:

Гармониялық осцилятор үшін Шредингер теңдеуі келесі түрде жазылады:

Дифференциалдық теңдеулер теориясынан жоғарыдағы теңдеудің шешімі келесі мәндерінде шекті, бірмәнді және үздіксіз болатыны дәлелденген:

,

мұндағы:

Суретте гармониялық осцилятордың энергетикалық деңгейлерінің схемасы көрсетілген. Ең аз мүмкін энергияның мәні Бұл энергияны нольдік энергия деп атайды.

Абсолют ноль Кельвинде гармониялық осциляторлар тепе-теңдік күйінің айналасында нольдік тербеліс жасайды.

Қорытынды

Де Бройль идеясы бойынша, бөлшектердің толқындық қасиеттері

болады. Осыған байланысты, кванттық механикаға мынадай постулат енгізуге болады: бөлшектің күйі толқындық функция - мен сипатталады, оның модулінің квадраты t уақыт мезетінде координаты

- ға тең нүктеде табу ықтималдығының тығыздығын береді. Жалпы айтқанда, толқындық функция (пси-функция) комплекс функция болып саналады. Ол бөлшектің қозғалысын анықтайтын белгілі бір дифференциалдық теңдеуді қанағаттандырады. Мысалы, - функция кванттық механиканың негізгі теңдеуі Шредингер теңдеуінің шешімі болып табылады. Толқындық функция бөлшекті табу ықтималдығын анықтайтын көмекші комплекс шама, сондықтан оның тікелей физикалық мағынасы болмайды. Табу ықтималдығы нақты оң шама болу керек,

пси - функцияның модулінің квадраты бұл шартты қанағаттандырады.

Ақырсыз кішкене аймақ қарастырайық,

оның көлем элементін деп белгілейік. Ықтималдық теориясы бойынша көлемдегі бөлшекті табу ықтималдығы мынаған тең:

, (3.1)

мұндағы

(3.2)

ықтималдық тығыздығы деп аталынады. Енді t уақыт мезетінде v көлемдегі табу ықтималдығын қарастырамыз:

. (3.3)

Бұл өрнек шын оқиғаның ықтималдығы. Ықтималдық теориясы бойынша шын оқиғаның ықтималдығы 1-ге тең деп қабылдауға тиістіміз. Егер осы келісімге тоқталсақ, (3.3)-ті бірге теңестіреміз:

. (3.4)

Сонымен біз нормалау шартын алдық. Осы шартты қанағаттандыратын

функциясы нормаланған функция деп аталынады.

Толқындық функция келесі шарттарды қанағаттандырады.

1. функция үзіліссіз болады және оның туындысы да үзіліссіз болу керек, себебі зарядтың және токтың тығыздығы үзіліссіз шамалар (ол шамалар толқындық функцияның көмегімен табылады).

2. функция кеңістікте ақырлы және бірмәнді болу керек. Оның ақырлы болуы (3.4)-ті қанағаттандырады және бірмәнділігі бастапқы мезеттегі толқындық функцияның мәні белгілі болса, кейінгі мезеттегі мәнін табуға болатындығын көрсетеді.

3. функция белгілі бір шекаралық шарттарды қанағаттандырады, себебі кванттық теңдеулердің шешімі математикалық физиканың кейбір есептерінің шешімін еске түсіреді. Егер осы үш шарт орындалса ғана толқындық функция кванттық теңдеудің жалғыз шешімі болып табылады.

Классикалық физикада суперпозиция принципі жиі қарастырылады. Бұл принцип кванттық механикада да өте үлкен рөль атқарады, оның екі анықтамасы бар.

1. Егер жүйе және - мен сипатталатын күйлерде орналаса алса, онда ол осы екі функциялардың сызықтық комбинациясынан түзілген функциямен сипатталатын күйде де орналаса алады

, (4.1)

мұндағы және - кез келген комплекс сандар, олар және күйлердің амплитудаларын анықтайды.

2. Егер толқындық функцияны кез келген нөлден өзгеше комплекс санға көбейтсек, онда жаңа толқындық функция жүйенің бастапқы күйіне сәйкес келеді.

Квантмеханикалық суперпозиция принципінің орындалуы үшін, қарастыратын теңдеулер сызықтық теңдеулер болуы керек. Егер күрделі күй бар болса, онда (4.1) өрнек былай жазылады:

(4.2)

мұндағы комплекс амплитудалар.

Пайдаланылған әдебиеттер

1. Қазақ энциклопедиясы

2. Жоғарыға көтеріліңіз↑ Гейзенберг В., Физические принципы квантовой теории, Л. – М., 1932; Дирак П., Принципы квантовой механики, пер с англ., 1960

3. Жоғарыға көтеріліңіз↑ Ландау Л. Д., Лифшиц Е. М., Квантовая механика, 4 изд., М., 1963;

4. Жоғарыға көтеріліңіз↑ Фейнман Р., Лейтон Р., Сэндс М., Фейнмановские лекции по физике, пер. с англ., в. 8 и 9, М., 1967


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: