Параллельный интерфейс

Один из наиболее древних интерфейсов в персональном компьютере — это параллельный интерфейс, или интерфейс принтера. Хотя за многие десятилетия он подвергался неоднократным доработкам, подключить принтер, который использовался с компьютером IBM PC XT, к современному компьютеру вполне возможно, правда, поймет ли этот принтер самая последняя версия Windows, еще неизвестно.

Термин "параллельный интерфейс" означает, что данные от компьютера к принтеру передаются не побитно, а в виде машинных слов — байтов (8 битов). Для каждого разряда байта в кабеле интерфейса предназначен отдельный провод. Кроме того, параллельно данным передается различная служебная информация, например, о готовности принтера к работе или о том, что закончилась бумага.

Для параллельного интерфейса на корпусе компьютера установлен 25-контактный разъем DB-25S. Для подключения интерфейсного кабеля к принтеру используется 36-контактный разъем Centronics с плоскими контактами. Длина простого принтерного кабеля не должна превосходить 5 м, а экранированного — 12 м. Максимальная скорость передачи данных по параллельному интерфейсу лежит в диапазоне от 120 до 200 Кбайт/с.

Первоначально стандарт на параллельный интерфейс предусматривал только передачу данных из компьютера в принтер, а также подключение только одного внешнего устройства. А поскольку пользователи часто устанавливают несколько принтеров, например струйный и игольчатый, то в этом случае для переключения интерфейса между принтерами используется обычный галетный переключатель на 25 групп, который монтируется в стальной коробке.

Сложность установки дополнительных разъемов на корпус персонального компьютера заставила разработчиков взяться за совершенствование параллельного интерфейса. В 1994 г. был принят стандарт IEEE 1284, который определил расширенные возможности параллельного порта. В современном компьютере параллельный порт теперь может работать в нескольких режимах — AT или SPP (Standart Parallel Port) — стандартный параллельный порт, ЕРР (Enhanced Parallel Port) — усовершенствованный параллельный порт и ЕСР (Extended Capability Port) — параллельный порт с расширенными возможностями.

Спецификация ЕРР была разработана фирмами Zenith и Xircom, чтобы использовать параллельный порт для двунаправленной передачи данных. Подключаемые устройства должны соответствовать стандарту ЕРР, а системная плата — обеспечивать двунаправленную передачу. Максимальная скорость передачи данных по этому стандарту достигает 2 Мбайт/с.

Кроме двунаправленной передачи данных между внешним устройством и процессором, стандарт ЕРР предусматривает возможность передавать блоки данных непосредственно между оперативной памятью и интерфейсом, не занимая ресурсов процессора. В таком режиме используется канал прямого доступа к памяти, который реализуется чипсетом системной платы.

Порт ЕРР полностью совместим со стандартным параллельным интерфейсом. Дополнительно он обладает возможностью подключать без использования каких-либо механических переключателей до 64 периферийных устройств, соединенных в цепочку.

Дальнейшим развитием параллельного интерфейса стала спецификация ЕСР, предложенная корпорациями Microsoft и HP, которая позволила организовать скоростную двунаправленную передачу данных, сжатых по методу RLE (Run Length Encoding). Для повышения производительности используется промежуточный FIFO-буфер емкостью 16 Кбайт. Количество подключаемых периферийных устройств увеличено до 128.

Несмотря на различия между стандартами параллельного порта, для подключения используются одни и те же разъемы. Режим работы переключается в настройках BIOS, где нужно выбрать между вариантами SPP, ЕРР и ЕСР. В настоящее время параллельный порт применяют для подключения различных видов принтеров, сканеров и внешних накопителей, например, приводов ZIP и внешних винчестеров. Также он применяется для соединения двух компьютеров друг с другом, для чего в операционной системе Windows есть стандартная программа связи Прямое кабельное соединение.

В качестве сервисной функции усовершенствованный параллельный порт поддерживает режим Plug and Play, что позволяет операционной системе получить регистрационную информацию от подключенного к нему устройства. Но при подключении старых игольчатых принтеров, которые не поддерживают этот режим, пользователю самому надо указать тип и модель принтера.

24. Последовательные интерфейсы высокой производительности

Последовательный интерфейс для передачи данных в одну сторону использует одну сигнальную линию, по которой информационные биты передаются друг за другом последовательно. Такой способ передачи определяет название интерфейса и порта, его реализующего (Serial Interface и Serial Port). Последовательная передача данных может осуществляться в синхронном и асинхронном режимах.

При асинхронной передачи каждому байту предшествует старт-бит, сигнализирующий приемнику о начале очередной посылки, за которой следуют биты данных или бит паритета (конроля четности). Завершает посылку стоп-бит. Старт-бит (имеющий значение лог. "0") следующего посланного байта может посылаться в любой момент после окончания стоп-бита. Старт-бит обеспечивает механизм синхронизации приемника по сигналу от передатчика. Внутренний генератор синхронизации приемника использует счетчик-делитель опорной частоты, обнуляемый в момент приема начала старт-бита. Этот счетчик генерирует внутренние стробы, по которым приемник фиксирует последующие принимаемые биты.

Формат асинхронной посылки позволяют выявить возможные ошибки передачи.

Для асинхронного режима принят ряд стандартных скоростей обмена: 50,75,110,150,300,600,1200,2400,4800, 19200,38400,57600,115200 бит/сек. Количество бит данных может составлять 5,6,7,8 бит. Количество стоп битов может быть 1,1.5,2 бита. Асинхронный в РС реализуется с помощью СОМ-порта с использованием протокола RS-232C.

Синхронный режим передачи предполагает постоянную активность канала связи. Посылка начинается с синхробайта, за которым плотно следует поток информационных бит. Если у передатчика нет данных для передачи, он заполняет паузу непрерывной посылкой байтов синхронизации. При передаче больших массивов данных накладные расходы на синхронизацию в данном режиме необходима будет ниже, чем в асинхронном. Однако в синхронном режиме необходима внешняя синхронизация приемника с передатчиком, поскольку даже малое отклонение частот приведет к быстро накапливающейся ошибке и искажению принимаемых данных. Внешняя синхронизация возможна либо с помощью отдельной линии передачи для передачи сигнала синхронизации, либо с использованием самосинхронизирующего кодирования данных, при котором на приемной стороне из принятого сигнала могут быть и импульсы синхронизации. В любом случае синхронный режим требует либо дорогих линий связи, либо дорогого оконеченного оборудования. Для РС существуют специальные платы - адаптеры SDLC, поддерживающие синхронный режим обмена. Они используются в основном для связи с большими машинами IBM и в настоящее время мало распространены. Из синхронных адаптеров в настоящее время чаще всего применяются адаптеры интерфейса V.35.

Последовательный интерфейс на физическом уровне может иметь различные реализации, различающиеся способом передачи электрических сигналов. Существует ряд родственных международных стандартов: RS-232C,RS-432A,RS-422A,RS485.

Несимметричные линии интерфейсов RS-232C,RS-432A имеют самую низкую защищенность от синфазной помехи. Лучшие параметры имеет двухточечный интерфейс

RS-422A и его магистральный (шинный) родственник RS-485, работающие на симметричных линиях связи. В них для каждого сигнала используются дифференциальные сигналы с отдельной (витий) парой приводов.

Наибольшее распространение в РС получил простейший из этих - стандарт RS-232C. В промышленной автоматике широко применяется RS - 422А, а также RS-485, встречающийся и в некоторых принтерах. Существуют относительно несложные преобразователи сигналов для согласования всех этих интерфейсов.

25. USB – перспективная высокопроизводительная последовательная шина для периферийных устройств персонального компьютера

USB (англ. Universal Serial Bus — «универсальная последовательная шина», произносится «ю-эс-би») — последовательный интерфейс передачи данных для среднескоростных и низкоскоростных периферийных устройств в вычислительной технике. Символом USB являются четыре геометрические фигуры: большой круг, малый круг, треугольник и квадрат, расположенные на концах древовидной блок-схемы.

Разработка спецификаций на шину USB производится в рамках международной некоммерческой организации USB Implementers Forum (USB-IF), объединяющей разработчиков и производителей оборудования с шиной USB.

Для подключения периферийных устройств к шине USB используется четырёхпроводный кабель, при этом два провода (витая пара) в дифференциальном включении используются для приёма и передачи данных, а два провода — для питания периферийного устройства. Благодаря встроенным линиям питания USB позволяет подключать периферийные устройства без собственного источника питания (максимальная сила тока, потребляемого устройством по линиям питания шины USB, не должна превышать 500 мА, у USB 3.0 - 900 мА).

Кабель USB состоит из 4 медных проводников — 2 проводника питания и 2 проводника данных в витой паре, и заземленной оплётки (экрана).

Кабели USB ориентированы, то есть имеют физически разные наконечники «к устройству» и «к хосту». Возможна реализация USB устройства без кабеля, со встроенным в корпус наконечником «к хосту». Возможно и неразъёмное встраивание кабеля в устройство, как в мышь (стандарт запрещает это для устройств full и high speed, но производители его нарушают). Существуют (хотя и запрещены стандартом) и пассивные USB удлинители, имеющие разъёмы «от хоста» и «к хосту».

Шина строго ориентирована, имеет понятие «главное устройство» (хост, он же USB контроллер, обычно встроен в микросхему южного моста на материнской плате) и «периферийные устройства». Шина имеет древовидную топологию, поскольку периферийным устройством может быть разветвитель (hub), в свою очередь имеющий несколько нисходящих разъемов «от хоста». Разветвитель — это сложное электронное устройство, пассивных разветвителей не бывает.

Соединение 2 компьютеров — или 2 периферийных устройств — пассивным USB кабелем невозможно. Существуют активные USB кабели для соединения 2 компьютеров, но они включают в себя сложную электронику, эмулирующую Ethernet адаптер, и требуют установки драйверов с обеих сторон.

Устройства могут быть запитаны от шины, но могут и требовать внешний источник питания. Поддерживается и дежурный режим для устройств и разветвителей по команде с шины со снятием основного питания при сохранении дежурного питания и включением по команде с шины.

USB поддерживает «горячее» подключение и отключение устройств. Это достигнуто увеличенной длиной заземляющего контакта разъёма по отношению к сигнальным. При подключении разъёма USB первыми замыкаются заземляющие контакты, потенциалы корпусов двух устройств становятся равны и дальнейшее соединение сигнальных проводников не приводит к перенапряжениям, даже если устройства питаются от разных фаз силовой трёхфазной сети.

На логическом уровне устройство USB поддерживает транзакции приема и передачи данных. Каждый пакет каждой транзакции содержит в себе номер оконечной точки (endpoint) на устройстве. При подключении устройства драйверы в ядре ОС читают с устройства список оконечных точек и создают управляющие структуры данных для общения с каждой оконечной точкой устройства. Совокупность оконечной точки и структур данных в ядре ОС называется каналом (pipe).

Оконечные точки, а значит, и каналы, относятся к одному из 4 классов — поточный (bulk), управляющий (control), изохронный (isoch) и прерывание (interrupt). Низкоскоростные устройства, такие, как мышь, не могут иметь изохронные и поточные каналы.

Управляющий канал предназначен для обмена с устройством короткими пакетами «вопрос-ответ». Любое устройство имеет управляющий канал 0, который позволяет программному обеспечению ОС прочитать краткую информацию об устройстве, в том числе коды производителя и модели, используемые для выбора драйвера, и список других оконечных точек.

Канал прерывания позволяет доставлять короткие пакеты и в том, и в другом направлении, без получения на них ответа/подтверждения, но с гарантией времени доставки — пакет будет доставлен не позже, чем через N миллисекунд. Например, используется в устройствах ввода (клавиатуры/мыши/джойстики).

Изохронный канал позволяет доставлять пакеты без гарантии доставки и без ответов/подтверждений, но с гарантированной скоростью доставки в N пакетов на один период шины (1 КГц у low и full speed, 8 КГц у high speed). Используется для передачи аудио- и видеоинформации.

Поточный канал дает гарантию доставки каждого пакета, поддерживает автоматическую приостановку передачи данных по нежеланию устройства (переполнение или опустошение буфера), но не дает гарантий скорости и задержки доставки. Используется, например, в принтерах и сканерах.

Время шины делится на периоды, в начале периода контроллер передает всей шине пакет «начало периода». Далее в течение периода передаются пакеты прерываний, потом изохронные в требуемом количестве, в оставшееся время в периоде передаются управляющие пакеты и в последнюю очередь поточные.

Активной стороной шины всегда является контроллер, передача пакета данных от устройства к контроллеру реализована как короткий вопрос контроллера и длинный, содержащий данные, ответ устройства. Расписание движения пакетов для каждого периода шины создается совместным усилием аппаратуры контроллера и ПО драйвера, для этого многие контроллеры используют крайне сложный DMA со сложной DMA-программой, формируемой драйвером.

Размер пакета для оконечной точки есть вшитая в таблицу оконечных точек устройства константа, изменению не подлежит. Он выбирается разработчиком устройства из числа тех, что поддерживаются стандартом USB

26. Периферийные устройства

Периферийные устройства окружают системный блок и позволяют пользователю взаимодействовать с компьютером. Периферийные устройства можно разделить на следующие группы:

- устройства ввода информации;
- устройства вывода информации;
- устройства хранения информации;
- мультимедийные устройства;
- устройства передачи информации.

К устройствам ввода относят такие стандартные устройства, как клавиатура и мышь, которые позволяют передать информацию от пользователя компьютеру. Кроме этого существуют много других устройств. Трекбол (или перевернутая мышь) - представляет собой шарик, вращая который, вы передвигаете курсор на экране. Планшет - это устройство ввода, по которому пользователь водит стилом (пером), а изображение передается компьютеру. Сканер - устройство для передачи картинки с твердого носителя (бумаги, пленки) в цифровой вид, который может обрабатываться компьютером. Цифровые камеры и цифровые видеокамеры, позволяют получить статические и подвижные снимки и передать в электронном виде на обработку компьютером.

Устройства вывода наоборот позволяют пользователю, получить информацию от компьютера, в понятном пользователю виде. Так для получения изменяемой информации, например - фильм, используются мониторы, реже проекторы. Чтобы получить документ на твердом носителе, применяют принтеры или плоттеры.

Кроме накопителей, которые присутствуют в системном блоке, те же накопители, могут подключаться, как внешние устройства, например: жесткие диски, дисководы, CD-ROM/RW, DVD-ROM/RW и т.д. Кроме этих накопителей, очень популярными являются Flash-накопители, небольшие устройства, подключаемые к USB порту. Их емкость составляет 16-256 Мб (и более), цена весьма привлекательна и так как USB порт есть сегодня в каждом компьютере, эти устройства стремительно набирают популярность, практически вытесняя дискеты и дисководы.

К мультимедийным устройствам, чаще всего, относят устройства связанные с вводом/выводом аудио и видеоинформации. Звуковая карта с акустической системой - для ввода/вывода звука. Для ввода/вывода видеоинформации используются платы нелинейного монтажа.

Эти устройства предназначены для обмена информацией двух и более компьютеров. Модем - устройство связи для удаленного соединения компьютеров по телефонной линии. На другом конце провода может быть ваш друг, либо же компьютер провайдера, предоставляющего доступ в Internet. Еще одним устройством обмена информации является сетевой адаптер (сетевая карта). Это более быстрое устройство для обмена информации, которое может передавать информацию по электрическим, оптическим, или радиоканалам связи.

27. Средства ввода информации в вычислительных системах

Устройства ввода информации служат для введения в машину программ и данных, быстрого внесения изменений вычислительного процесса. Устройства ввода информации можно разделить на две группы: автоматические и неавтоматические. К автоматическим устройствам ввода информации, осуществляющим его без участия человека, относятся устройства ввода с промежуточного носителя и устройства непосредственного ввода. Для неавтоматического, ручного ввода информации используют электрифицированные пишущие машинки, дисплеи, телетайпы, бухгалтерские и другие клавишные машины.

К устройствам ввода информации с промежуточных носителей относятся устройства считывания с перфокарт, перфолент и магнитных лент.

При работе с устройствами чтения перфокарт и перфоленты вся вводимая информация фиксируется на специальных перфоносителях - перфокартах или перфоленте. Перфокарта представляет собой тонкий лист из картона, а перфолента - узкую бумажную ленту. Информация наносится на них в виде пробивок отверстий - перфораций. Отверстие означает единицу, отсутствие отверстия - нуль. Пробивка отверстий осуществляется специальным устройством, называемым устройством подготовки данных.

Раньше почти все ЭВМ имели устройства ввода информации с перфокарт и перфолент. Они достаточно просты и имели относительно высокие скорости ввода. Ввод информации с перфоносителей осуществлялся с помощью считывающего устройства. Обычно использовали два способа считывания: контактный и бесконтактный. При контактном способе считывания металлические щетки, щупы или иглы, попадая в отверстия в перфоносителе, замыкали электрическую цепь и вызывали появление сигнала, соответствующего коду. Бесконтактный способ считывания мог быть фотоэлектрическим, пневматическим или конденсаторным. При фотоэлектрическом считывании луч света, проходя через отверстие в перфоносителе, попадал на фотоэлемент, вызывая появление электрического сигнала. Пневматическое считывание основано на восприятии воздушного потока через отверстия в перфоносителе, а конденсаторное - на изменении величины емкости конденсатора при наличии или отсутствии отверстия.

Наибольшей надежностью отличается контактный способ считывания. Однако у этого способа невысокая скорость считывания вследствие инерционности механических контактов. Наиболее широкое распространение получил фотоэлектрический метод считывания информации с перфоносителя. Он обеспечивает надежность и высокое быстродействие устройств ввода информации.

Устройства ввода информации с магнитных лент представляют собой рассмотренные выше накопители на магнитных лентах.

Устройства непосредственного ввода информации, или, как их еще называют, читающие автоматы, вводят информацию в ЭВМ непосредственно с первичного документа, миную промежуточные носители. Носителями информации для них являются специальные типизированные бланки. Запись информации на таких бланках осуществляется специально разработанными шрифтами. Существует несколько способов записи шрифтов. Примером такого шрифта может служить используемый для записи почтовых индексов нормализованный шрифт. Стороны прямоугольников и вспомогательные линии печатаются краской, невоспринимаемой фотоэлементами читающего автомата. Цифры наносятся веществом, которое воспринимается фотоэлементами. Имеются автоматы, считывающие информацию с печатного текста, с графиков. Кроме того, уже разработаны образцы устройств ввода информации с человеческого голоса. Хотя подобные устройства очень сложны, но у них большое будущее. Они значительно облегчают работу человека по подготовке информации на специальных машинных носителях, появляется возможность вести диалог с ЭВМ на родном для человека языке и т.п.

Ручные устройства ввода информации служат, как правило, и устройствами непосредственной связи оператора с ЭВМ.

28. Средства отображения информации в вычислительных системах

устройство вывода информации из ЭВМ, преобразующее закодир. цифровую информацию в форму, удобную для зрительного (визуального) восприятия человеком (напр., в виде текста, плана, таблицы, графика, чертежа и т. д.), что облегчает совместную работу ЭВМ и человека в системах "человек - машина". О. и. у. характеризуется: 1) изобразит. возможностями, определяемыми объёмом отображаемых данных, разнообразием символов, возможностью их изменения, наличием цветности и т. д.; 2) скоростью выдачи данных по сигналу оператора и способностью нх длит. сохранения на индикаторе; 3) точностью индикации, т. е. соответствия изображения данным, поступающим из ЭВМ, как по содержанию, так и по расположению информации на экране индикатора, н др. О. и. у. подразделяют на индивидуальные и коллективные. Наиболее широко используются О. и. у. на ЭЛТ (дисплеи), реже проекционные, с плазменными панелями либо с объёмной индикацией


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: