Эндо ортасы

Ортаның түрі ______________________________________________________

Нәрлі негізі ______________________________________________________

Дифференциалдық фактор ___________________________________________

Индикатор _______________________________________________________

Левин ортасы

Ортаның түрі ______________________________________________________

Нәрлі негізі ____________________________________________________

Дифференциалдық фактор ___________________________________________

Индикатор ________________________________________________________

Плоскирев ортасы

Ортаның түрі ______________________________________________________

Нәрлі негізі ____________________________________________________

Элективті фактор ___________________________________________________

Дифференциалдық фактор ___________________________________________

Индикатор ________________________________________________________

Тұзды агар

Ортаның түрі ______________________________________________________

Нәрлі негізі _____________________________________________________

Элективті фактор ___________________________________________________

СТА

Ортаның түрі ______________________________________________________

Нәрлі негізі _______________________________________________________

Элективті фактор __________________________________________________

Дифференциалдық фактор ___________________________________________

Аэробты бактериялардың таза дақылын бөліп алу схемасы

1-ші кезең:

а) Зерттеу үшін патологиялық материалды алу.

б) Тасымалдау, сақтау, патологиялық материалды зерттеуге дайындау.

в) Патологиялық материалдан жұғын дайындау, Грам әдісі бойынша бояу және микроскопия жүргізу.

Патологиялық материалдан алынған жұғын Бояу ______________ Ұлғайту _____________

г) Жекелеген колонияларды алу мақсатында патологиялық материалды тығыз қоректік ортаға (ДДО н/е селективті ортаға) егу. Термостатта инкубациялау.

2-ші кезең:

а) Күмәнді колонияларды алу мақсатында қоректік орталарда өскен жекелеген колониялардың (дақылдық қасиетін) өсу сипатын зерттеу.

Күмәнді колониялардан жұғын дайындау (Грам әдісі бойынша бояу).

б) Таза дақылды жинау мақсатында шабылған агарға қалған колонияларды егу. Термостатта инкубациялау.

Күмәнді колонияларды зерттеу (эшерихия, стафилококкты)

Дақылдық қасиетін зерттеу №1 колония №2 колония
- колониялардың пішіні    
- колониялардың көлемі    
-мөлдірлік дәрежесі    
- түсі    
-колониялардың шетінің сипаты    
-беткейлік көрінісі    

Таңдап алынған колониялардан жұғын дайындау (Грам әдісі бойынша бояу).

Жекеліп өскен колониялардан алынған микроорганизмнің морфологиясы (Грам әдісі бойынша бояу)

№1 колониядан жұғын дайындау Бояу____________ Ұлғайту ___________ №2 колониядан жұғын дайындау Бояу____________ Ұлғайту ___________

3-ші кезең:

Бөлініп алынған таза дақылды идентификациялау:

а)Морфологиялық және тинкториальді қасиеті (шабылған агардан жұғын дайындау, грам әдісі бойынша бояу);

б) Дақылдық қасиеті;

в) Биохимиялық қасиеті;

г) Антигендік қасиеті;

Қорытынды: Бөлініп алынған микроорганизмнің түрі көрсетіледі, керек жағдайда бөлініп алынған микроорганизмнің антибиотикке сезімталдығын анықтау нәтижесіде де беріледі.

Тақырыбы: Аэробты микробтардың таза дақылын бөліп алу (зерттеудің 2-ші күні) және анаэробтар. Микробтардың қоректенуі, тыныс алуы. Қоректік орталар. Әр түрлі бактериальді дақылдардың сұйық және тығыз қоректік орталарда өсу сипаттамасын оқу.

Анаэробты бактерияларды дақылдандыру

Анаэробиозды тудыратын әдістер: ____________________________________

__________________________________________________________________

__________________________________________________________________

__________________________________________________________________

Анаэробты бактерияларды дақылдандыруға арналған қоректік орталар

Вильсон-Блер ортасы:

Нәрлі негізі________________________________________________________

Дыхательный субстрат_______________________________________________

Редуцирующий фактор______________________________________________

Тиогликолен ортасы (стерильдікті бақылауға арналған орта- СБО):

Нәрлі негізі________________________________________________________

Тыныс алу субстраты________________________________________________

Редуцирлеуші фактор________________________________________________

Цейсслердің глюкозалы-қанды агары:

Питательная основа_________________________________________________

Тыныс алу субстраты________________________________________________

Редуцирлеуші фактор_______________________________________________

Анаэробты бактериялардың таза дақылын бөліп алу схемасы

1-ші кезең:

а) Зерттеу үшін патологиялық материалды алу.

б) Тасымалдау, сақтау, патологиялық материалды зерттеуге дайындау.

в) Патологиялық материалдан жұғын дайындау, Грам әдісі бойынша бояу және микроскопия жүргізу.

г) Патологиялық материалды анаэробтарға арналған сұйық қоректік ортаға егу. Анаэробты жағдайда термостатта инкубациялау.

2-ші кезең:

а) Сұйық ортадаларда өсу сипатын зерттеу, материалдан жұғын дайындау, Грам әдісі бойынша бояу және микроскопия жүргізу;

б) Жекелеген колонияларды алу мақсатында материалды тығыз қоректік ортаға егу. Анаэробты жағдайда термостатта инкубациялау.

3-ші кезең:

а)Күмәнді колонияларды алу мақсатында қоректік орталарда өскен жекелеген колониялардың (дақылдық қасиетін) өсу сипатын зерттеу.

Күмәнді колониялардан жұғын дайындау (Грам әдісі бойынша бояу).

б) Қалған колонияларды таза дақылды алу мақсатында сұйық қоректік орталарға егу. Анаэробты жағдайда термостатта инкубациялау.

4-ші кезең:

Бөлініп алынған таза дақылды идентификациялау:

а)Морфологиялық және тинкториальді қасиеті (шабылған агардан жұғын дайындау, грам әдісі бойынша бояу);

б) Дақылдық қасиеті;

в) Биохимиялық қасиеті;

г) Антигендік қасиеті;

д) Токсигенділікті анықтау.

Қорытынды: Бөлініп алынған микроорганизмнің түрі көрсетіледі, керек жағдайда бөлініп алынған микроорганизмнің антибиотикке сезімталдығын анықтау нәтижесіде де беріледі.

Бактериялардың қоректенуі

Бактериалық жасушаның химиялық құрамы. Бактерия жасушасының 80-90% судан, ал қалған 10% құрғақ заттан тұрады. Жасуша ішіндегі су бос немесе байланысқан күйде болады. Ол жасушаға серпімділік қасиетін бере отырып, гидролитикалық реакцияларға қатысады. Жасушаны кептіру арқылы ішіндегі судан арылту, ондағы метаболикалық және кобею процестерінің тоқтауына әкеліп соқтырады. Мұздатылған күйдегі жасушаны вакуумда кептіру (лиофилизациялау) микробтардың кобеюін тоқтатып, ұзақ уақыт сақталуына мүмкіндік береді.

Құрғақ зат құрамы төмендегідей: 52% - ақуыз, 17% - көмірсулар, 9% - майлар, 16% - РНҚ, 3% - ДНҚ және 3% - минералдық заттар.

Ақуыздар ферменттер болып табылады, сонымен қатар жасушаның құрлымдық бөлігі, ол цитоплазматикалық мембрана және оның туындылары, жасуша қабырғасы, талшықтар, споралар және кейбір капсулалар құрамына кіреді. Кейбір бактериялардың ақуыздары олардың антигендері мен токсиндері болады. Бактериялар ақуздарының құрамына адамдарда болмайтын Д-аминқышқылдары мен диаминопимелин қышқылы кездеседі.

Бактерия жасушасы құрамындағы көмірсулар моно-, ди-, олигосахаридтер мен полисахаридтер күйінде болады, сонымен қатар ақуыздар, майлар және басқа қосындылар құрамына кіреді.

Майлар немесе липидтер цитоплазмалық мембрана құрамына кіреді, грамтеріс бактериялардың жасуша қабырғасында болады, сондай-ақ, қоректік зат ретінде жинақталады, грамтеріс бактериялардың эндотоксиндерінің құрамында болады, ЛПС құрамында антиген түзеді.

Нуклеин қышқылдары. Бактерия жасушасында РНҚ-ның барлық түрлері кездеседі: иРНҚ, тРНҚ, рРНҚ. Пуриндік және пиримидиндік нуклеотидтер – нуклеин қышқылдарын түзетін құрылыстық блоктар болып табылады. Бұдан басқа пурин және пиримидин қышқылдары көптеген коферменттер құрамына кіре отырып аминқышқылдарын, моносахаридтерді және органикалық қышқылдарды тасымалдауға қатысады. ДНҚ бактерия жасушасында тұқым қуалау қызметін атқарады. ДНҚ молекуласы екі полинуклеотидтік тізбектерден тұрады.

Минералдық заттар жасушаны өртегеннен кейінгі кұлден табылады. Төмендегідей көптеген минералдық заттар (N, S, Ca, K, Mg, Fe, Mn), сонымен қатар микроэлементтер (Zn, Cu, Co, Ba) кездеседі.

Қоректену түрлері және энергия алу әдістері бойынша бактериялардың жіктелуі. Бактерия метаболизмінің негізгі мақсаты өсу, дәлірек айтқанда жасушаның барлық құрылымдарының үйлесімді ұлғаюы болып табылады. Бактерия жасушасының негізі көміртегі атомынан тұратын органикалық қосылыстар (ақуыздар, көмірсулар, нуклеин қышқылдары) болғандықтан, жасуша өсу үшін үздіксіз көміртегі атомдарының түсіп тұруын қажет етеді. Сіңірілетін көміртегі алу көзіне байланысты бактерияларды төмендегі түрлерге бөледі:

Аутотрофтар (гректің autos- өзім, trophe- қоректену)-өз жасушаларын құруда көміртегін ауадағы СО2 - нен сіңіретіндер.

Гетеротрофтар ( грекше heteros- басқа )- көміртегіні органикалық қосылыстардан пайдаланатындар. Жеңіл сіңірілетін көміртегі көздері гексозалар, көпатомды спирттер, аминқышқылдар болып табылады.

Энергия көзі ретінде күннің жарығын пайдаланатын организмдерді фототрофтардеп атайды. Ал тотығу-тотықсыздану реакцияларының нәтижесінде пайда болған энергияны пайдаланатын организмдерді хемотрофтардеп атайды.

Хемотрофтардың ішінде органикалық емес электрондарды(H2, NH2, H2S, Fe 2+ және т.б) пайдаланатындарды литотрофтар ( гректің lithos -тас ),ал органикалық қосылыстардың электрондарын пайдаланатындарды органоторфтар деп атайды.

Медициналық микробиология зерттейтін бактериялар гетерохемоорганотрофтарға жатады. Бұл топтың ерекшелігі, көміртегі көзі-энергия көзі болып табылатындығында.

Әр түрлі бактерияларда гететротрофтық дәрежесі біркелкі болмайды. Өлі органикалық заттармен қоректенетін және басқа организмдерге тәуелсіз микроорганизмдер- сапрофиттер (гректің sapros - шіріген, phitos -өсімдік) және қоректік заттарды макроорганизмнен алуға тәуелді гетеротрофты микроорганизмдер паразиттер (гректің parasitos- арамтамақ) деп бөлінеді.

Паразиттерді облигатты және факультативті түрлерге ажыратады. Облигатты паразиттер жасушадан тыс жерде мүлдем тіршілік ете алмайды. Оларға макроорганизм жасушасының ішінде ғана көбейе алатын Rickettsia, Coxiella, Ehrlichia, Chlamidia тұқымдастығының өкілдері жатады.

Факультативті паразиттер, сапрофиттер тәрізді иесінің жасушасынсыз қоректік орталарда in vitro, яғни дәлірек айтқанда организмнен тыс тіршілік етіп көбейе алады.

Бактерияларды in vitro жүйесінде дақылдандыру қоректік орталарда жүзеге асырылады. Жасанды қоректік орталар келесі талаптарға сай болуы тиіс:

1. Бактериялардың барлық тіршілік процестері суда өтетіндіктен кез-келген қоректік ортада жеткілікті мөлшерде су болуы қажет.

2. Гетеротрофтық бактерияларды дақылдандыру үшін ортада органикалық көміртегі көзі болуы керек. Бұл қызметті түрлі органикалық қосындылар атқарады: көмірсулар, аминқышқылдары, органикалық қышқылдар, майлар. Ең жоғарғы энергетика көзі глюкоза болып табылады, өйткені ол ыдырау барысында тікелей АТФ және биосинтетикалық жолдарға қажетті ингредиеннттерге бөлінеді. Бұл мақсатта ақуыздардың жартылай гидролизінің өнімі, поли-, олиго-, дипептидтерден тұратын пептон жиіпайдаланылады. Пептон және де бактериалдық ақуыздарды құруға қажетті аминқышқылдарын жеткізіп отырады.

3. Ақуыз, нуклеотидтер, АТФ, коферменттер синтездеу үшін бактерияға азот, күкірт, фосфат және басқа да минералдық заттар мен микроэлементтер қажет.

Азот көзі ретінде пептон болуы мүмкін, сонымен қатар көптеген бактериялар азот көзі ретінде аммоний тұздарын пайдалана алады.

Күкірт пен фосфорды бактериялар бейорганикалық тұздар ретінде пайдалануы мүмкін: сульфаттар және фосфаттар күйінде.

Ферменттердің дұрыс жұмыс жасауы үшін бактерияларға Ca2+, Mg2+, Mn2+, Fe2+ иондары қажет, оларды қоректік орталарға фосфат тұздары ретінде қосып отырады.

4. Көптеген микроорганизмдердің өсіп-өнуінде орта pH маңызды орын алады. Ортаның pH-ын белгілі бір деңгейде ұстап отыру, бактериялардың өздерінің тіршілік өнімдерінің нәтижесінде пайда болған улардан өліп қалмауы үшін қажет. Осы мақсатта қоректік ортаны фосфаттық буфер көмегімен буферлеп қояды. Зат алмасудың нәтижесінде шамадан тыс қышқыл бөлінген жағдайда қоректік ортаға кальций карбонатын қосады.

5.Ортаның белгіленген осмостық қысымы болуы керек. Бактериялардың көпшілігі изотониялық орталарда өседі, ал ортаның изотониялық болуы NaCl-дін 0,87%-дық концентрацияда қосу арқылы жеткізіледі. Кейбір бактериялар тұз концентрациясы 1%-дан төмен орталарда өсе алмайды. Бұндай бактерияларды галофильді бактериялар деп атайды.

Қажет болған жағдайда қоректік орталарға өсу фаторларын, кейбір бактериялардың өсуін басатын ингибиторлар, ферменттер әсерін күшейтетін субстраттар мен индикаторлар қосылады.

6. Қоркетік орталар стерильді болуы тиіс.

Консистенциясына байланысты қоректік орталар сұйық, жартылай сұйық және тығыз болып келеді. Орта тығыздығы агар-агар қосу арқылы жасалады.

Агар-агар – балдырлардан алынатын полисахарид. Ол 1000С температурада балқып, 45-500С – та қатады. Жартылай сұйық орта жасау үшін 0,5%, және тығыз орталар үшін 1,5-2% концентрацияда агар қосылады. Құрамы және қолданылу мақсатына қарай орталарды қарапайым, күрделі, элективті, минималды, дифференциалдық-диагностикалық және аралас қосарланған орталар деп бөледі.

Құрамына қарай орталар қарапайым және күрделі деп бөлінеді. Қарапайым орталарға пептонды су, қоректік сорпа және ет-пептонды агар жатады. Осы қарапайым орталардың негізінде күрделі орталар жасалынады, мысалы қантты және сарысулы сорпа, қанды агар.

Ортаны қолданылу мақсатына қарай элективті, байыту, дифференциалдық-диагностикалық деп бөледі.

Элективті деп белгілі бір түрге жататын микроорганизм ғана жақсы өсетін ортаны атайды. Мысалы pH 9 болатын сілтілі орта тырысқақ вибрионын бөліп алуға пайдаланылады. Басқа бактериялар, атап айтқанда ішек таяқшасы, сілтілік жоғары болғандықтан өспейді.

Байыту орталары – бұл белгілі бір бактерияның өсуіне жоғары мүмкіндіктер жасап, басқа бактериялардың өсуін басатын орталар (1- сурет). Мысалы, натридің селениті қосылған орта Salmonella тұқымдастығына жататын бактериялардың өсуін күшейтіп, ішек таяқшасының өсуін басып отырады.

Дифференциалдық-диагностикалық орталар бактериялардың ферментативтік белсенділігін зерттеуде қолданылады. Бұл орталардың құрамына фермент әсер ететін субстрат қосылған жай қоректік орта және субстратқа фермент әсерін тигізгенде түсін өзгертетін индикатор кіреді. Бұндай ортаның мысалы ретінде Гисс ортасын келтіруге болады. Осы ортада бактерия жасушасы ферменттерінің қантты ыдыратуын зерттейді.

Аралас (қосарланған) орталар, бірлескен флораның өсуін басатын элективті орта мен микроб бөлетін ферменттің белсенділігін анықтайтын дифференциалдық-диагностикалық орталар біріктіріліп жасалады. Бұндай орталардың мысалы ретінде патогенді ішек таяқшаларын бөліп алуда қолданылатын Плоскирев ортасы мен висмут-сульфитті агарды келтіруге болады. Берілген екі орта да ішек таяқшасының өсуін басады.

Бактериялардың тыныс алуы

Бактерия жасушасындағы энергия АТФ түрінде кездеседі. Хемоорганотрофты бактерияларда энергияны АТФ түрінде алу реакциялары, фосфорилдеу реакциясымен байланысты тотығу-тотықсыздану реакциялары болып табылады. Осы реакцияларда тотыққан көміртегі жасушадан СО2 күйінде бөлінеді. Энергияны алу әдістеріне байланысты метаболизмнің бірнеше түрлері болады: тотығу немесе тыныс алу, ашыту немесе ферменттік және аралас.

Энергия және көміртегі көзі ретінде глюкоза немесе басқа гексоздарды пайдаланғанда тотығудың бастапқы этаптары тотығатын түрінде де, ашыту түрінде де ортақ болып келеді. Бұған глюкозаны пируватқа айналдыру жатады.

Тотығу метаболизмі.

Тотығу метаболизміне қабілетті бактериялар энергияны тыныс алу жолымен алады.

Тыныс алу – тотығу кезінде фосфорилденіп орайласқан тотығу–тотықсыздану реакцияларынан энергия алу, бұл кезде электрондардың донорлары органикалық (органотрофтарда) және бейорганикалық (литотрофтарда) қосылыстар, ал акцепторлары – тек қана бейорганикалық қосылыстар бола алады.

Тотығу метаболизмі бар бактерияларда электрондар немесе сутегі –Н+ акцепторы молекулалық оттегі болып табылады. Бұл жағдайда пируват С2 дейін толық тотығады. Биосинтетикалық процестер және сутек атомдары үшкарбондар циклы негізін салушыны жеткізіп беруші қызметін атқарады, ал оның барлығын молекулалық оттегіге күрделі мультиферментті жүйесі бар – тыныстық тізбек айналдырады. Бактериялардың тыныстық тізбегі ЦПМ-да және жасуша ішілік мембраналық құрлымдарда орналасады.

Тыныс алу тізбегіндегі АТФ-тың құрылуы хемоосмостық процеспен байланысты. ЦПМ-дағы тасымалдаушылардың ерекше бағытталуы сутегінің ішкі мембранадан сыртқы беткейіне беріліп, соның нәтижесінде мембраналық потенциалда байқалатын сутегі атомдарының градиенттері құрылады. Мембраналық потенциалдың энергиясы АТФазамен мембранаға шоғырланған АТФ-тың синтезделуіне жұмсалады.

Прокариоттар көміртегіден басқа да органикалық қосылыстарды, атап айтқанда ақуыздарды, СО2 және Н2О-ға дейін толық тотықтырып энергия көзі ретінде пайдалана алады.

Аминқышқылдары мен ақуыздар да энергетикалық ресурстар ретінде іске асырылуы мүмкін. Оларды пайдалану бірінші кезекте дайындық сипаттағы тиісті ферменттік өзгерістермен байланысты. Алдымен ақуыздар жасуша сыртында протеолиттік ферменттермен пептидтерге дейін ыдыратылады, оларды жасуша жұтып алып, жасушаішілік пептидазалар аминқышқылдарына дейін ыдыратады.

Аммонификациялау процесі «шіру» процесі ретінде де белгілі, бұл кезде жағымсыз спецификалық иісі бар, біріншілік аминдер құрайтын заттар жинақталады.

Шіріктік бактериялар ақуыздың СО2, NH3, H2S-ке дейін минерализациялануын жүзеге асырады. Шіріктік бактерияларға Proteus, Pseudomonas, Bacillus cereus жатады.

Ашыту (ферменттік) метаболизмі.

Ферментация немесе ашыту – субстраттан бөлініп алынған сутегіні органикалық қосылыстарға тасымалдау кезінде энергия алу процесі.

Ашыту процесіне оттегі қатыспайды. Тотыққан органикалық қосылыстар ортаға бөлініп жинақталады. Көмірсулар, аминқышқылдары (ароматталғаннан басқа), пуриндер, пиримидиндер, көпатомды спирттер ферменттенеді. Ароматикалық көмірсулар, стероидтар, каротиноидтар, майлы қышқылдар аши алмайды. Бұл заттар тек қана оттегі бар ортада ғана ыдырап тотыға алады, ал анаэробты жағдайда бұлар тұрақты. Қышқылдар, газдар, спирттер ашыту өнімдері болып табылады.

Спирттік ашыту. Негізінен ашытқы саңырауқұлақтарда кездеседі. Соңғы өнімі – этанол мен СО2. Глюкозаның ашытылуы ФДФ-жолмен анаэробты жағдайда өтеді. Оттегі түсе бастаған жағдайда ашыту процесі әлсіреп, тыныға бастайды. Спирттік ашытуды оттегімен басуды Пастер эффектісі деп атайды.

Спирттік ашыту тамақ өндірісінде (нан жабуда, шарап жасауда) қолданылады.

Сүтқышқылды ашыту. Сүтқышқылды ашытудың екі түрін ажыратады: гомоферменттік және гетероферменттік.

Гомоферменттік түрінде глюкозаны ыдырату ФДФ-жолмен жасалынады. Гомоферменттік сүтқышқылды ыдырату S. pyogenes, E.faecalis, S. salivarius кейбір Lactobacillus-тің (l. dulgaricus, L.lactis) қатысуымен өтеді.

Гетероферменттік сүтқышқылды ашыту ФДФ-жолдарының альдолаза және триозофосфатизомераза ферменттері жоқ бактерияларда болады. Глюкозаның ыдырауы ПФ-жолымен өтіп фосфоглицеринді альдегид түзіледі, содан кейін ол ФДФ-жолдары бойынша пируватқа айналып, соңынан лактатқа тотықсызданады. Ашытудың бұл түрінің қосымша өнімдері этанол мен сірке қышқылы болады. Гетероферментті сүтқышқылды ашыту Lactobacillus және Bifidobacterium тұқымдастығының өкілдерінде кездеседі.

Сүт қышқылды бактериаларды сүт өндірістерінде түрлі ашыған өнімдерді алуға және де антибиотиктер дайындауға кеңінен пайдаланады.

Құмырсқақышқылды (аралас) ашыту. Enterobacteriaceae және Vibriоnaceae туыстастарының өкілдерінде кездеседі. Глюкоза ФДФ-жолдарымен, ал глюконат КДФГ-жолдарымен ыдырайды.

Анаэробты жағдайда бөлінетін ашыту өнімдеріне байланысты процестің екі түрін ажыратады:

1. Бір жағдайда пируват ыдырау нәтижесінде ацетилкофермент және құмырсқа қышқылы бөлініп, ал ол өз кезегінде көміртегінің қосқышқылы мен молекулалық сутегіне ыдырауы мүмкін. Тізбекті реакцияның арқасында түзілетін ашытудың басқа өнімдері этанол, янтар және сүтқышқылы болып табылады. Көп мөлшерде қышқыл түзілгенін күшті қышқылды ортада түсін өзгертетін индикатор метил-рот көмегімен анықтауға болады.

2. Ашытудың басқа түрінде бірқатар қышқылдар түзіледі, бірақ ең басты өнімдер ацетоин және 2,3-бутандиол болып табылады. Ацетоин пируваттың екі молекуласынан құрылып, соңынан екі есе декарбоксилденеді. Тотыққан кезде ацетоиннан 2,3-бутандиол түзіледі. Осы заттар ά-нафтолмен сілтілі ортада әрекеттескен кезде бурыл түс береді, бұл құбылысты бактерияларды идентификациялауда қолданылатын Фогес-Проскауер реакциясын қою арқылы анықтайды.

Майқышқылды ашыту. Май қышқылы, бутанол, ацетон, изопропанол, және бірқатар органикалық қышқылдар, атап айтқанда сірке, капрон, валериан, пальмитин қышқылдары қант ыдыратқыш қатаң анаэробтардың көміртегіні ашыту өнімдері болып табылады. Осы қышқылдар спектрі анаэробтарды идентификациялауда сұйықгазды хромотография көмегімен экспресс-әдіс ретінде қолданылады.

Ақуыздардың ферменттелуі. Егер ашыту зат алмасуы бар бактериялар үшін энергия көзі ақуыздар болса, бұндай бактерияларды пептолитикалық деп атайды. Клостридиялардың кей түрлері пептолитикалық болып табылады, ол: C. histolyticum, C. botulinum. Пептолитикалық бактериялар ақуыздарды гидролиздеп, аминқышқылдарды ашытады.Көптеген аминқышқылдар басқалармен қосылып ашиды, бұл кезде кейбіреулері донор орнында болса, ал басқалары – сутегі акцепторлары болады. Донор-аминқышқылы кетоқышқылға дезаминделіп тотықтық декарбоксилдену нәтижесінде май қышқылына айналады.

Анаэробтық тыныс алу. Кейбір бактериялар сутегінің ақырғы акцепторы ретінде нитратты пайдалану қабілетіне ие. Нитратты тотықсыздандыру екі жолмен өтеді:

1. Аммонификация кезінде нитрат аммиакқа айналады;

2. Денитрификация кезінде нитраттың тотықсыздануы молекулалық азот немесе азоттың ашытқысына дейін жүреді.Бұл процесс нитратредуктаза ферментімен байланысты.

Cульфаттық тыныс алу. Анаэробты тыныс алуда сульфатты сутегінің соңғы акцепторы ретінде қолдануға тек қана екі топқа жататын бактериялар қабілетті: Desulfovibrio, Desulfotomaculum. Бұл бактериялар қатаң анаэробтар болып табылады, олар донор ретінде молекулалық сутегіні қолданады, сол себептен оларды хемолитотрофтарға жатқызады. Бұл бактериялар табиғатта күкіртті сутегіні түзуде жетекші орын алады.

Табиғатта кеңінен тараған оттегі бос және байланысқан күйде кездеседі. Ол жасушада, сутегі мен органикалық қосылыстармен байланысқан күйде кездеседі. Ол атмосферада бос молекулярлы күйде кездесіп, жалпы көлемнің 21% үлесін құрайды.

Оттегіге деген қатысы бойынша және энергия алу барысында оттегіні қолдануларына байланысты микроорганизмдер 3 топқа бөлінеді: облигатты (нағыз) аэробтар, облигатты анаэробтар, факультативті анаэробтар.

Облигатты аэробтар. Өсуі және көбеюі тек қана оттегі болған жағдайда өтеді. Оттегі оттегілік тыныс алу жолымен энергия алу үшін қолданылады.

Энергияны оксидативтік зат алмасу кезінде алады, цитохромоксидаза катализдейтін реакцияларда оттегіні терминальды акцептор ретінде пайдаланады.

Облигатты аэробтарды ауа атмосферасындағы парциалды қысымда өсетін қатаң аэробтар және төмен парциальды қысымда өсетін микроаэрофилдер деп бөледі.

Бұл микроаэрофилдердің күшті тотықтырғыштармен жанасқанда белсенділігі жойылатын кейбір ферменттерінің (мысалы гидрогеназа ферменті) болуымен байланысты төмен парциалдық қысымда ғана олардың ферменттік белсенділіктері артады.

Облигатты анаэробтар. Энергияны алу үшін оттегіні қолданбайды. Зат алмасу оларда –ашыту арқылы жүреді. Екі түрінде ғана сульфатты тыныс алу бар, олар хемолитотрофтарға жататын Desulfovibrio, Desulfotomaculum. Облигатты анаэробтар екі топқа бөлінеді: қатаң анаэробтар және аэротолеранттылар.

Қатаң анаэробтарға молекулалық оттегі улы болады, ол микроорганизмдерді өлтіреді немесе өсуін тежейді.

Қатаң анаэробтар энергияны майқышқылды ашыту жолымен алады. Қатаң анаэробтарға мысалы кейбір клостридиялар (C. botulinum, C tetani), бактероидтар жатады.

Аэротолерантты микроорганизмдер энергия алуда оттегіні қолданбайды, бірақ оттегі бар ортада тіршілік ете алады. Бұл топқа гетероферменттік сүтқышқылды ашыту жолымен энергия алатын сүтқышқылды бактериялар жатады.

Факультативті анаэробтар. Оттегі бар әрі оттегі жоқ ортада да өсіп-өнуге қабілетті. Оларда зат алмасудың аралас түрі бар. Энергияны алу процесі оттегімен тыныстану кезінде оттегіні пайдалану арқылы, ал оттегі жоқ жерде ашытуға көшу арқылы энергия алуға қабілетті. Бактериялардың бұл тобына анаэробты нитратты тыныс алу тән.

Микроорганизмдердің оттегіге түрлі физиологиялық қатынасы оттегі атмосферасында тіршілік етуге мүмкіндік беретін ферменттік жүйелерінің болуымен байланысты. Оттегі атмосферасында өтетін тотығу процестері кезінде, флавопротеидтер тотыққанда түрлі улы заттар: сутектің асқын тотығы және оттегінің ашып кеткен радикалы, қосақталмаған электроны бар қосындылар түзілетіндігін атап өткен жөн. Бұл қосындылар қанықпаған май қышқылдарының және ақуыздардың SH- тобының асқынтотықтануын қоздырады.

Оттегінің улы әсерін бейтараптау үшін, ондай атмосферада тіршілік ете алатын микроорганизмдердің қорғаныс механизмдері болады. Бұндай бактерияларда сутектің асқын тотығы каталаза ферментімен су және молекулалық оттегіге ыдыратылады.

Қатаң анаэробтарда каталаза да, пероксидаза да болмайды. Бірақ көптеген қатаң анаэробтарда супероксиддисмутаза ферменті кездеседі. Осы ферменттің көмегімен олар оттегіге төзімді болады. Кейбір қатаң анаэробтар (Bacteroides, Fusobacterium) молекулалық оттегінің аз мөлшеріне де төзімсіз болады, ал Clostridium тұқымдастығының кейбір өкілдері оттегі атмосферасында тіршілік ете алады. Қатаң анаэробтарды дақылдандыру үшін атмосфералық оттегіні толық шығарып тастауға мүмкіндік беретін жағдайлар жасалынады: арнайы құралдарды қолдану, анаэростаттар мен анаэробты бокстар, қоректік орталарға оттегіні редукциялайтын заттар қосу, мысалы натридің тиогликолятын, немесе оттегіні сіңірушілерді пайдалану.

Қоректік орталар

Бактерияларды дақылдандыру үшін бірқатар шарттарды сақтау қажет.

1. Құнды қоректік ортаның болуы. Кез-келген қоректік орта құрамының күрделілігі мен пайдалану мақсатына қарамастан негізі судан, энергия мен көмірсутегінің органикалық көзінен, тұрақты рН пен осмостық қысымға ие болуы қажет.

2. Дақылдандыру температурасы. Көбею жылдамдығына температура әсерін тигізеді. Температураға бактериялар әрқалай жауап береді:

- мезофилдер 20-400С температуралық аралықта көбейеді. Адамдарда ауру тудыратын бактериялардың көпшілігі мезофилдерге жатады;

-термофилдер 40-600С температуралық диапазонда өседі. Термофилдерге актиномицеттер, кейбір споратүзуші бактериялар жатады;

- психрофилдер 0-200С температуралық аралықта көбейеді.

3. Дақылдандыру атмосферасы. Қатаң аэробтар өсіп көбею үшін оттегі қажет. Аэробтар Петри табақшасындағы агардың бетінде немесе сұйық ортаның жұқа беткі қабатында жақсы өседі. Қатаң аэробтардың сұйық ортаның терең деңгейлерінде өсуін қамтамасыз ету үшін оттегі бүкіл қоректік ортаға диффузды түрде таралуы қажет. Бұған қоректік ортаны үздіксіз араластырып немесе сілкіп отыру, атап айтқанда аэрациялау, арқылы қол жеткізіледі. Аэрациялау арнайы аппаратттармен – сілкілегішпен іске асырылады.

Факультативті анаэробтарды дақылдандыру үшін жоғарыда аталып кеткен әдістерді қолданады, себебі оттегі бар жерде оларға энергетикалық қамтамасыз етуде оксидативті метаболизм ферментациядан тиімді болады. Микроаэрофилдер оттегінің парциалдық қысымы төмен жағдайда көбейеді. Бұған ауадағы СО2-нің парциалдық қысымы 0,03%-ға қарағанда дақылдандыру атмосферасындағы СО2 парциалдық қысымын 1-5% концентрациясына көтеру арқылы қол жеткізіледі. Бұл үшін арнайы СО2-инкубаторлар қолданылады, немесе себінділерді жанып тұрған шырағдан қойылған эксикаторларға орналастырады.

Облигатты анаэробтар өсу және көбею үшін ауадағы оттегінің ортаға түспеуін талап етеді. Бұған келесі шаралар арқылы қол жеткізіледі:

- қоректік орталарға оттегіні редуциялайтын заттар қосу арқылы: тиогликоль қышқылын, аскорбин қышқылын, цистеин, сульфидтер;

- сұйық қоректік орталарды қайната отырып оттегіден құтылып, сонан-соң орта құйылған ыдысты резинка тығынмен жауып қою арқылы;

- сілтілі пирогаллол және тағы да басқа оттегіні сіңірушілерді пайдаланып, герметикалық жабылатын ыдыстарға - «газпактарға» салып қою арқылы. Бұл әдіс (Gaspack) аэротолерантты бактерияларды дақылдандыруда қолданылады;

- ауадағы оттегіні механикалық жомен ығыстырып, орнына ыдысты инертті газбен толтыру арқылы (бұл мақсатта анаэростаттар мен анаэробты бокстар қолданылады).

Хемо – және автотрофты бактерияларды дақылдандыру үшін СО2-мен қанықтырылған атмосфера жасалынады.

4. Дақылдандыру уақыты генерациялау уақытына байланысты. Бакатериялардың көпшілігі көрнекті өсу беру үшін 18-48 сағат аралығында дақылданады. Көкжөтел қоздырғышын дақылдандыру үшін 5 тәулік керек, ал M. tuberculosis-ті дақылдандыру үшін 3-4 апта қажет.

5. Жарықтандыру. Фототрофты бактерияларды өсіру үшін жарық қажет. Шартты-патогенді бактериялардың кей түрлері жарықтандыруға байланысты пигмент түзеді, оны идентификациялау кезінде пайдаланады.

Абсолюттік жасуша ішілік паразиттерді дақылдандыру (оған Rickettcia, Ehrlichia, Coxiella, Chlamidia тұқымдастығының бактериялары жатады) жасушалар дақылдарында немесе жануарлар мен буынаяқтылардың организмінде, сонымен қатар тауық эмбриондарында (эрлихиялардан басқа) өсіру арқылы іске асырылады. Тауық эмбриондарын гетеротрофтық деңгейі жоғары бактерияларды дақылдандыруда да қолданады, мысалы: Borrelia мен Legionella тұқымдастығының бактериялары.

Өндірістік жағдайларда бактериялар мен саңырауқұлақтардың биомассасын (антибиотиктер, вакциналар мен диагностикалық препараттар жасау мақсатында қолдануға алу үшін) дақылдандыру сыйымдылығы әртүрлі арнайы аппараттарда (ферментерлерде) микробтардың өсу және көбеюінің ең тиімді параметрлерін қатаң түрде сақтау арқылы іске асырылады.

Тақырыбы: Бактериялардың биохимиялық белгілері. Ферментативті

белсенділікті оқу (зерттеудің 3-ші күні). Бактериялардың

идентификациясы. Саңырауқұлақтар, құрылысы, жіктелуі және дақылдандыру

Бактерия жасушаның барлық метаболиттік реакциялары негізінде 6 сыныпқа жататын ферменттер арқылы атқарылады: оксиредуктазалар, трансферазалар, гидролазалар, лигазалар, лиазалар, изомеразалар. Бактерия жасушасы түзетін ферменттер жасуша ішілік эндоферменттер немесе қоршаған ортаға бөліп шығарылатын экзоферменттер деп бөлінеді. Экзоферменттер жасуша ішіне келіп түсетін көміртегі мен энергияны сырттан тасымалдауда үлкен орын алады. Гидролазалардың көпшілігі экзоферменттер болып табылады, олар қоршаған ортаға бөлініп ірі молекулалы пептидтерді, полисахарид пен майларды жасуша ішіне енуге қабілетті мономерлер мен димерлерге дейін ыдыратады. Экзоферменттердің бірқатары мысалы гиалуронидаза, коллагеназа және басқалары агрессиялық ферменттер болып келеді. Ферменттердің кейбіреулері бактерия жасушасының периплазматикалық кеңістігінде орналасады. Олар заттарды бактерия жасушасына тасымалдауға қатысады. Бактерияның ферментативтік спектрі тұқымдастық пен туыстастықты және кейбір жағдайларда түрді көрсететін таксономиялық белгіге жатады. Сондықтан ферментативтік белсенділік спектрін анықтауды бактерияның таксономиясын белгілеуде қолданады. Экзоферменттерді диференциалдық-диагностикалық орталарда анықтауға болады, сондықтан бактерияларды идентификациялау үшін дифференциалдық-диагностикалық орталар жиынтықтарынан тұратын арнайы тест-жүйелер жасалынған.

Бактерия идентификациясына арналған негізгі биохимиялық тесттер.

Тест Әсер ету принципі Қолдану варианты
  Каталазды белсенділікке Фермент Н2О2 ыдыратады және оттегінің түзілуін тудырады (-)стрептококктарды және(+)стафилококк-тарды дифференциялау үшін
  Коагулазды белсенділікке Фермент плазма коагуляциясын тудырады. Коагулаза оң және коагулаза теріс стафилококктарды дифференциялау үшін
  Хеддельсонның бактериостатикалық әдісі Әртүрлі бруцеллалардың өсуі ортаға негізгі фуксиннің немесе тиониннің енуін тежейді. Brucella түрлерін дифференциялау үшін
  Гисс ортасына егу Қышқыл немесе газдың түзілуімен жүретін көмірсу-лардың әртүрлі ферментация-сын және өсуге деген қабілет-тілігін анықтайды Бактериялардың барлық түрінің ферментативті белсенділігін идентификациалау үшін
  Индол түзілуіне тест Триптофанның ортада ыдырауы индолдың түзілуіне әкеледі, ол ортаға Ковач реактивін енгізгеннен кейін қызылға боялғанда анықталады. Энтеробактериялардың дифференциясы үшін
  Козердің цитратты әдісі Цитраты бар ортада өсу рН сілтілі жаққа жылжуына және алдында жасыл болған ортаның көгеруіне әкеледі. Көмірсудың көзі ретінде цитратты жою қасиеті бар бактерияны анықтау.
  Лецитиназды белсенділікке тест Преципитация аймағын анықтайды (лецитоветиллазды ферментпен жұмыртқа сары-сының лецитиннің ыдырау өнімі) S.aureus,Сlostridium sp. туысындағы бактериялар үшін
  Лакмусты сүтпен сынама Ферментация лакмустық сүттің қалпына келуіне және түссізденуіне әкеледі Энтерококтар (+), клостридиялар (+) индикациясы үшін
  Глюкозадан қышқыл түзілу интенсивтілігін анықтауға арналған метил қызылмен реакция (Метилрот реакциасы) Күшті қышқыл түзілуде (рН 3,0) индикаторды қосқаннан кейін орта қызыл түске боялады, сәл қышқыл түзгенде (рН 6,0) орта сары түске боялады. Энтеробактерия индикациясы үшін
  Нитраттардың қалпына келуі Нитратредуктаза ферменті қалпына келтіреді NO3 - ті NO2 Энтеробактерияларды басқа грам теріс бактериялардан дифференциялау үшін.
  Оксидазаға тест Оксидаза көк түске боялуға әкелетін фенилендиаминді тотықтырады Оксидаза(+) – вибриондарды, нейссерияларды, псевдомонадаларды, кампилобактерияларды және басқаларды оксидаза(-) бактериалардан бөліп алу үшін
  Хью-Лейфсон тесті(глюкоза ферментациясы және тотығуына) Бактериялар глюкозасы бар екі пробиркадағы ортада дақылданады: 1-аэробты жағдайда (қышқылдануды анықтауға), 2 – анаэробты (ферментация) Ортаның алғашқы түсі- жасыл, (+) реакциада – сары, энтеробактерияларды басқа грам теріс бактериялардан ажырату үшін
  Фенилаланинге тест Фенилаланиннің ыдырауы темір хлоридін қосқаннан кейін ортаны жасыл түске бояйтын фенилпирожүзім қышқылының түзілуіне әкеледі. Протейларды басқа энтеробактериялардан ажырату үшін (оң)
  Уреазды тест Уреаза оң бактериялар мочевинаны ыдыратып аммонийдің түзілуімен жүреді, құрамында фенол қызылы бар ортаның қызылға боялуына әкеледі Протейаларды басқа энтеробактериялардан ажырату үшін
  Фогес-Проскауэр реакциясы Кейбір энтеробактериялар глюкозаның ферментациясы кезінде, креатинмен әсерлескенде ортаны қызыл түске бояитын ацетилметилкарбинол түзеді (ацетоин) Оң энтеробактериаларды ажырату үшін

Бактерияның тыныс алуына қатысатын (каталаза, нитратредуктаза, цитохромоксидаза) ферменттерді анықтау.

А)Каталазаны анықтау: аэробты және факультативті анаэробты бактерияларда каталаза активтілігі жоғары. Бұл фермент сутегінің қос тотығын оттегі мен суға ыдыратады. Н2О2 – улы қосылыс, бактериальды торшаның тыныс алу тізбегінде оттегі тотыққанда флавопротеид түзеді. Облигатты анаэробтарда каталаза ферменті жоқ, сондықтан Н2О2 жиналады және торшаға кері әсерін тигізеді.

Әдісті қою: Пробиркаға тәуліктік сорпадағы зерттеу дақылынан 1-2 мл және бірнеше тамшы 3% сутегі қос тотығын тамызамыз. Каталаза болғанда О2 газы көпіршіктер бөлінеді, реакция оң болады, көпіршік болмағанда теріс.

Б)Нитратредуктазаны анықтау. Нитратредуктаза ферменті арқылы бактерияның нитрат пен нитритті қалпына келтіру қабілеті анықталады. Анаэробты тыныс алуда нитрат электронның соңғы акцепторы болып табылады («нитратты» тыныс алу негізінен факультативті анаэробтарға тән). Ортада нитрит болғанда крахмал-йодты реакция болады, себебі нитрат қышқыл ортада калий йодына дейін ыдырап, йод түзеді. Соңында крахмалмен әрекеттесіп көк түс түзеді.

Әдісті қою. Пробиркаға 2-3 мл зерттеу дақылын құямыз, ортада өсіреміз, НNО3 құрамды және 1 мл реактив қосамыз, 10% Н24 тең көлемді қосылыс және ерітінді, 0,5г КJ құрамды, 1г крахмал және 100 мл су. Реакция оң болғанда көгеру пайда болады.

В)Цитохромоксидаза реакциясы. Цитохромоксидаза аэробты тыныс алатын бактерияларда кездеседі

Әдісті қою. Пробиркаға зерттеу дақылын құямыз, үстіне 1% спиртті ерітінді α-нафтолын және 1% сулы ерітінді диметилпарафенилендиаминді құямыз. Реакция нәтижесі оң болғанда ақшыл көк түс пайда болады.

Саңырауқұлақтар, құрылысы, жіктелуі және дақылдандыру.

Микоздар-кең таралған жұқпалы аурулар, олардың қоздырғыштары микроскопиялық организмдер-саңырауқұлақтар (Fungi, Mycota, Mycetes). Саңырауқұлақтар хлорофилы жоқ, цитоплазмасында оқшауланған ядросы (немесе бірнеше ядросы), серпінді (ригидты) жасуша қабаты, көптеген вакоульдері, рибосомалары және басқа органеллалары бар біржасушалық немесе көпжасушалық эукариоттық микроорганизмдерге жатады. Олардың өсімдіктерге үлкен ұқсастығы бар, дегенмен кейбір метоболизмдік үрдістері жануарлар жасушасына жақындатады.

Саңырауқұлақ денесі (таллом-қабықшалар) мицелий (грибница) болып табылады. Олар перделері бар немесе жоқ, бұтақша жайылған түтікшелер тәрізді, және де бүршіктенген оваль, дөңгелекше пішінді жасушалардан тұратын гифалар. Құрылымына байланысты (мицелийлерді құрайтын жасушалар пішіні және саңырауқұлақтар жасушасының бөліну механизмі бойынша) саңырауқұлақтар 2 топқа бөлінген:

1. Гифалылар немесе мицелийлілер (зең саңырауқұлақтар).

2. Бүршіктенушілер (ашытқылар, ашытқытәріздестер).

Ең қысқа мицелийлер-ашытқыларда; ең ұзыны-көгерткіш саңырауқұлақтарда (мукорларда). Мицелийлер тұрақты түрде бұтақталып отырады; ескірген мицелийлер-дәнді, ірілеу, көптеген қосындылары және вакоульдері болады, жаңа мицелийлер-мөлдір, нәзік, гомогенді.

Саңырауқұлақтар арасында диформизм құбылысы тараған, бұл кезде саңырауқұлақтың бір түрі гифаларды да, және де бүршіктенген жасушаларды да түзе алады. Бүршіктенуден гифа түзуге ауысуы саңырауқұлақтың патогенділік белгілерінің күшейгені деп қарастыруға болады. Диформизм кокцидияларға (Coccidioides), гистоплазмаларға (Histoplasma), кандидаларға (Candida) тән.

Мицелиялар біржасушалық, септаланған, яғни көлденең перделермен- септалармен (ол ценоцитті-бірегей, ортақ деп аталады) белінбеген болуы мүмкін; немесе септаланған көпжасушалы; немесе жалған мицелиялар (бүршіктеніп бөліне бастаған жасушалардан тұратын) түзеді. Ценоциттік саңырауқұлақтарға зигомицеттер (Zygomycetes), септаланғандарға-аскомицеттер (Ascomycetes), дейтеромицеттер (Deuteromycetes) және базидиоммицеттер (Basidiomyctes) жатады.

Саңырауқұлақтарды субстраттарда (тері, шаш, тырнақ немесе зертханалардағы қоректік орталар) өсу сипаты бойынша вегетативтік (субстраттық) және репродуктивтік (ауалы) деп бөледі.Сырттай қарағанда зертханалық жағдайда субстарттық түрі қоректік ортаның бетінде (сирек жағдайда ішінде) орналасады; ал репродуктивті түрі-субстраттың беткейінен жоғары көтеріліп өседі.

Саңырауқұлақтар жыныстық және жыныссыз жолмен көбейеді. Жыныстық жолмен көбейетіндер-жетілген саңырауқұлақтар, ал жыныссыз жолмен көбейетіндер-жетілмеген саңырауқұлақтар деп аталады. Бірқатар саңырауқұлақтартарда жыныстық және жыныссыз жолмен де көбейетіндігі анықталған.

Жыныстық жолмен көбею аскомицеттерге, базидиомицеттерге және зигомицеттерге тән. Осындай жолмен көбею бірнеше сатыдан тұрады. Бұл кезде бір-біріне жақын орналасқан екі шеткі гифалардың бірігуі, гаметалар, жыныстық споралар және басқа жыныстық құрылымдар (телеморф) пайда болуы іске асады. Мұндай үрдіс нәтижесінде жыныстық споралар пайда болады: қалталарда (аскаларда) – жетілетін аскоспоралар, өнім беретін денешіктерде – жетілетін базидоспоралар, зигоспоралар. Саңырауқұлақтардың 70 %- да дамудың жыныстық фазасы тіркеледі, ал жыныстық даму кезеңінің аралығында саңырауқұлақтар жыныссыз жолмен-вегетативті тәсілмен көбейеді. Жыныссыз жолмен дейтеромицеттер көбейеді. Бұл жолдың негізінде митоз жатыр, яғни мицелия гифаларының қарапайым бөлінуі және саңырауқұлақтың жыныссыз өнімдік құрылымы (анаморф) пайда болуы жүреді. Анаморфтарға артроспоралар, хламидоспоралар, конидиялар, және де оларды қалыптастыратын және ұстап тұратын құрылымдар (спронгиялар, конидияұстаушылар, өнімдік денешіктер, фиалалар т.б.) жатады. Аталған анаморфтар саңырауқұлақтардың жайылып өсуіне және қолайсыз жағдайда олардың сақталуына себепкер болады.

Этиологиялық маңызы бар саңырауқұлақтарды идентификациялап зертханалық диагноз қою телеморфтар және анаморфтардың сипатын, соның ішінде құрылысының, мөлшерінің ерекшелігін, конидилар санын анықтау негізінде жүргізілетінін ескеру қажет. Анаморфтар мөлшері шамалы біржасушалы (микроконидиялар) және көпжасушалы (макроконидиялар) болуы мүмкін. Артроспоралар немесе таллоконидиялар кәдімгі гифалардың шетінде немесе екі жанында орналасатын септаланған гифалардың фрагменттері. Бластоконидиялар (бластоспоралар) аналық жасушадан ұрпақтық жасушаның бүршіктеніп көбею жолымен пайда болады, хламидиоконидиялар (хламидиоспоралар) мицелия ішінде гифаның шеңберленіп қалыңдауы және оның қалың қабатпен қоршалуы нәтижесінде пайда болады.

Спорангияспоралар (эндоспоралар) саңырауқұлақтардың ерекше қапшығының-спорангиялардың ішінде жетіліп және сол жерде орналасады. Конидиялар (эктоспоралар) өнім беретін гифаның ең шетінде жетіледі және сол жерде орналасады.

Тақырыбы: Вирустар. Құрылысы және жіктелуі. Вирустар репродукциясы. Вирустарды дақылдандыруы. Бактериофагтар.

репродукциясы, өсіп-өндіру әдістері.

Вирустар – тұқым қуалаушылық қасиеті бар, өзгеруге, көбеюге бейім өте ұсақ, тірі микроорганизмдер. Вирустардың бактериялардан айырмашылығы – клеткалық құрылысы болмайды, тек қана бір нуклеин қышқылы ДНҚ немесе РНҚ болады. Белок синтездейтін рибосомалары болмайды сондықтанда, оларда зат алмасу жүрмейді. Жіктелуі бойынша:VIRA патшалығы екі үлкен топқа бөлінеді ДНҚ және РНҚ құратын топтар.

Құрылысы

Вирустың құрылысының компоненттері: кампосер – белокты бөлек бірлігі, капсид – капсомерлерден құралған күндек, нуклеокапсид – нуклеин қышқылы мен кпасид белогының комплексі, вирион – вирустың бүтін бөлшектері.

Вирустардың құрамы өте қарапайым. Олар нуклеин қышқылынан және оларды қоршап жататыны – капсид және суперкапсид деп аталатын қабаттардан, сондай–ақ вирус қабығының сыртындағы рецепторлардан.

Морфологиялық құрылысы бойынша вирустар 2 топқа бөлінеді:

А) жай, қарапайым құрылысыты – нуклеин қышқылы және оны қоршаған капсидтен тұрады (полимиелит вирусы, аденовирустар, құтыру вирусы);

Б)күрделі құрылысты - нуклеин қышқылынан, капсидтен және суперкапсидтен тұрады (ұшық, тымау, шешек вирустары).

ДНҚ немесе РНҚ вирионның ортасында орналасады. Вирус геномы 3-4 -тен (паравирустар) 150-ге дейін (шешек вирусы) геннен құрылады. Әр түрлі вирустардың геномындағы нуклеин қышқылы бір немесе екі жіп тәрізді, үздіксіз немесе үздікті, түзу сызықты немесе сақиналы сияқты болуы мүмкін. Мысалы, СПИД вирусында екі үздіксіз түзусызықты РНҚ жіптері (молекуласы) бар; В – гепатит вирусында – екі сақиналық ДНҚ жіптері, әрі 3/1 қысқартылған ішкі жіп; тұмау вирусында бір үздікті РНҚ жібі бар. Нуклеин қышқылы геномды белоктармен байланысты.

Капсид – жеке–жеке белоктық субъединицадан құрылған–капсомерлерден тұрады. Капсомерлердің кеңістіктегі орнына сәйкес капсид симметриясының екі түрі болады–спиральдық және кубтық. Спиральдық типте капсид нуклеин қышқылын орап жатады, кубты типте–капсид ортасында нуклеин қышқылы орналасқан қуыс дене тәрізді болады. Бактерия вирустарында–бактериофагтарда симметрияның екі типі кездеседі, яғни вирус басындағы капсидтың симметриясы кубты болса, ал өсіндісінде–спиральдық болып келеді.

Құрылысы күрделі вирустардың суперкапсиді липопротеидтық комплекстерден тұрады. Вирионның құрамындағы липидтер мен көмірсулардың шығу тегі жасушалық екендігі осы күні мойындалып отыр.

Вирионның бетіндегі рецепторлардың түрі әр түрлі: таяқшалық, саңырауқұлақты, шоқпарлық т.б. Химиялық құрамы бойынша гликопротеидтердің құрамына жатады. Вирустар рецепторлардың көмегімен сезімтал клетканың бетіне адсорбцияланады, ал сондай–ақ, рецепторлардың белгілі физико–химиялық қасиеттері бар. Мысалы, тұмау вирусының екі түрлі рецепторы бар–таяқшалық–гемагглютининдер және шоқпарлық–нейраминидазалар.

Гемаглю


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: