Принцип линейности и однородности памяти

Память – линейная (упорядоченная) однородная последовательность некоторых элементов, называемых ячейками. В любую ячейку памяти другие устройства машины (по толстым стрелкам) могут записать и считать информацию, причём время чтения из любой ячейки одинаково для всех ячеек. Время записи в любую ячейку тоже одинаково (это и есть принцип однородности памяти).[1] Такая память в современных компьютерах называется памятью с произвольным доступом (Random Access Memory, RAM). На практике многие ЭВМ могут иметь участки памяти разных видов, одни из которых поддерживают только чтение информации (Read Only Memory, ROM), другие могут допускать запись, но за большее время, чем в остальную память (это так называемая полупостоянная память) и др.

Ячейки памяти в машине фон Неймана нумеруются от нуля до некоторого положительного числа N, которое обычно является степенью двойки. Адресом ячейки называется её номер. Каждая ячейка состоит из более мелких частей, именуемых разрядами и нумеруемых также от нуля и до определённого числа. Количество разрядов в ячейке обозначает разрядность памяти. Каждый разряд может хранить цифру в некоторой системе счисления. В большинстве ЭВМ используется двоичная система счисления, т.к. это более выгодно с точки зрения аппаратной реализации, в этом случае каждый разряд хранит один бит информации. Восемь бит составляет один байт.

Содержимое ячейки называется машинным словом. С точки зрения архитектуры, машинное слово – это минимальный объём данных, которым могут обмениваться различные узлы машины (не надо, однако, забывать о передаче управляющих сигналов по тонким стрелкам). Из каждой ячейки памяти можно считать копию машинного слова и передать её в другую часть памяти, при этом оригинал не меняется. При записи в память старое содержимое ячейки пропадает и заменяется новым машинным словом.

Заметим, что на практике решение задачи сохранения исходного машинного слова при чтении из ячейки для некоторых видов памяти является нетривиальным и достаточно трудоёмким, так как в этой памяти (она называется динамической памятью) при чтении оригинал разрушается. Приведём типичные характеристики памяти современных ЭВМ.

1. Объём памяти – сотни миллионов ячеек (обычно восьмиразрядных).

2. Скорость работы памяти: время доступа (минимальная задержка на чтение слова) и время цикла (минимальная задержка на чтение из одной и той же ячейки двух слов) – порядка единиц и десятков наносекунд (1 секунда=109 наносекунд). Заметим, что для упомянутой выше динамической памяти время цикла больше, чем время доступа, так как надо ещё восстановить разрушенное при чтении содержимое ячейки.

3. Стоимость. Для основной памяти ЭВМ пока достаточно знать, что чем быстрее такая память, тем она, естественно, дороже.

Принцип неразличимости команд и данных. Машинное слово представляет собой либо команду, либо подлежащее обработке данное (число, символьная информация, элемент изображения и т.д.). Для краткости в дальнейшем будем называть такую информацию ²числами². Данный принцип фон Неймана заключается в том, что числа и команды неотличимы друг от друга – в памяти и те и другое представляются некоторым набором разрядов, причём по внешнему виду машинного слова нельзя определить, что оно представляет – команду или число.

Из этого принципа вытекает очевидное следствие – принцип хранимой программы. Этот принцип является очень важным, его суть состоит в том, что программа хранится в памяти вместе с числами, а значит, может изменяться во время счёта этой программы. Говорят также, что программа может самомодифицироваться во время счёта. Заметим, что, когда фон Нейман писал свою работу, большинство тогдашних ЭВМ хранили программу в памяти одного вида, а числа – в памяти другого вида. В современных ЭВМ и программы, и данные хранятся в одной и той же памяти.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: