Возникновение структур и их характер обычно определяют, измеряя механические свойства систем: вязкость, упругость, пластичность, прочность. Поскольку эти свойства связаны со структурой, их называют структурно – механическими.
Структурно – механические свойства систем исследуют методами реологии.
Реология – наука о деформациях и течении материальных систем. Она изучает механические свойства систем по проявлению деформации под действием внешних напряжений.
Термин деформация означает относительное смещение точек системы, при котором не нарушается ее сплошность.
Внешнее напряжение – есть не что иное, как давление Р.
В механике сплошных сред доказывается, что в случае несжимаемых материалов, каковыми являются большинство дисперсных систем, все виды деформации (растяжение, сжатие, кручение и др.) можно свести к основной – деформации сдвига под действием напряжения сдвига Р (Н/м2 =. Па). Скорость деформации является скоростью сдвига. Деформацию выражают обычно посредством безразмерных величин
. Скорость деформации –
, где t – время.
Изучая структурно – механические свойства дисперсных систем, можно определить, образуется ли в системе структура и каков ее характер.
СВОБОДНОДИСПЕРСНЫЕ (БЕССТРУКТУРНЫЕ) СИСТЕМЫ
Агрегативно устойчивые золи (бесструктурные системы) подчиняются законам Ньютона, Пуазейля и Эйнштейна.
Закон Ньютона устанавливает связь между скоростью деформации и напряжением сдвига:
(11.1)

Рис.11.2. Зависимость скорости деформации от напряжения сдвига

Рис.11.3. Зависимость расхода жидкости от давления

Рис. 11.4. Зависимость вязкости дисперсной системы от концентрации
где Р – напряжение сдвига, поддерживающее течение жидкости, Па;
– деформация (течение) жидкости;
– скорость деформации;
– коэффициент пропорциональности, называемый коэффициентом вязкости или динамической вязкостью, Па – с;
– величина, обратная вязкости, называется текучестью.
Уравнение (11.1) представляет собой уравнение прямой, представленной на рис. 11.2.
Вязкость
– величина постоянная, не зависящая от Р.
Закон Пуазейля выражает зависимость объема жидкости, протекающей через трубу или капилляр, от давления:
, (11.2)
где Q – расход жидкости в единицу времени; Р — давление в трубе; К – константа, определяемая геометрическими параметрами трубы или капилляра
,(r и l – радиус и длина трубы). Из графика, отвечающего закону Пуазейля (рис. 11.3), видно, что динамическая вязкость не зависит от давления, а скорость течения жидкости прямо пропорциональна давлению.
Закон Эйнштейна устанавливает зависимость вязкости
бесструктурной жидкой дисперсной системы от концентрации дисперсной фазы:
(11.3)
где
– динамическая вязкость дисперсионной среды;
– объемная концентрация дисперсной фазы;
– коэффициент, определяемый формой частиц дисперсной фазы. График, отвечающий закону Эйнштейна, дан на рис. 11.4.
Таким образом, относительное приращение вязкости прямо пропорционально относительному содержанию дисперсной фазы. Чем больше
, тем сильнее выражено тормозящее влияние частиц, тем больше вязкость. Расчеты, проведенные Эйнштейном, показали, что для сферических частиц
= 2,5, для частиц другой формы
> 2,5. Жидкости, подчиняющиеся рассмотренным законам, называются ньютоновыми жидкостями.
ЖИДКООБРАЗНЫЕ СТРУКТУРИРОВАННЫЕ СИСТЕМЫ
При наличии структуры взаимодействием между частицами дисперсной фазы нельзя пренебречь. Прилагаемое напряжение сдвига не только заставляет жидкость течь, но и может разрушать существующую в ней структуру. Это неизбежно должно приводить к нарушению пропорциональности между прилагаемым напряжением Р и скоростью деформации
, вязкость системы
становится величиной, зависящей от Р. Следовательно, для таких жидкостей законы Ньютона, Пуазейля и Эйнштейна не выполняются. Такие жидкости называются неньютоновыми жидкостями.
Для описания связи между скоростью деформации
и прилагаемым напряжением сдвига Р обычно используют эмпирическое уравнение Оствальда – Вейля:
или
, (11.4)
где k и n – постоянные, характеризующие данную жидкообразную систему.
При n – 1 и k =
уравнение (11.4) превратится в уравнение Ньютона. Таким образом, отклонение величины n от единицы характеризует степень отклонения свойств неныотоновых жидкостей от ньютоновых. При n < 1 ньютоновская вязкость уменьшается с увеличением напряжения и скорости сдвига. Такие жидкости называются псевдопластическими.
При n > 1 ньютоновская вязкость жидкости увеличивается при увеличении напряжения и скорости сдвига. Такие жидкости называются дилатантными.
На рис. 11.5 представлена кривая течения псевдопластической жидкости. На кривой имеются три характерных участка. На участке I (OA) система ведет себя подобно ньютоновой жидкости с большой вязкостью
.Такое поведение системы объясняется тем, что при малых скоростях течения структура, разрушаемая приложенной нагрузкой, успевает восстанавливаться. Такое течение называется ползучестью.

Рис.11.5. Кривая течения псевдопластической структурированной
жидкообразной системы
Ползучесть – это медленное течение с постоянной вязкостью без прогрессирующего разрушения структуры.
Для слабоструктурированных систем участок I обычно небольшой и его практически невозможно обнаружить. Для сильноструктурированных систем область значений Р, при которых наблюдается ползучесть, может быть весьма значительной. Напряжение Рк соответствует началу разрушения структуры.
На участке II (АВ) зависимость
от Р теряет линейный характер, при этом вязкость уменьшается. Это уменьшение связано с разрушением структуры. В точке В структура практически полностью разрушена. Напряжение, отвечающее этой точке, называется предельным напряжением сдвига Рm. При напряжениях Р > Рm, когда структура системы разрушена, система течет подобно ньютоновой жидкости, имеющей вязкость
.
Напряжение Рт называется пределом текучести – это минимальное напряжение сдвига, при котором ползучесть системы переходит в течение. Чем прочнее структура, тем выше предел текучести. Расход жидкости в единицу времени Q, протекающей через трубу при Р < Рm можно рассчитать по уравнению Бингама:
(11.5)
где
– пластическая вязкость, она характеризует способность структуры к разрушению при изменении нагрузки, т. е.
= f(Р).
Прочность структуры оценивается не только пределом текучести, но и разностью
. Чем больше эта разность, тем прочнее структура. Значения и
и
могут различаться на несколько порядков. Так, для суспензии бентонитовой глины
= 106 Па * с, a
= 10-2 Па * с.
ТВЕРДООБРАЗНЫЕ СТРУКТУРИРОВАННЫЕ СИСТЕМЫ
На рис. 11.6 изображена кривая течения твердообразной структурированной системы. Сравнивая эту кривую с аналогичной кривой для жидкообразной структурированной системы (см. рис. 11.5), видим, что на первой кривой появился горизонтальный участок IV, совпадающий с осью абсцисс. Он заканчивается при достижении давления, равного PS, называемого статическим предельным напряжением сдвига. При Р < PS система не только не течет, но и не проявляет свойств ползучести,
. Величина PS характеризует прочность сплошной пространственной сетки.

Рис.11.6. Кривая течения твердообразной структурированной системы
При Р > PS кривая течения твердообразной системы аналогична кривой течения жидкообразной системы, рассмотренной выше.
Для твердообразных упругопластичных тел
на много порядков больше, чем для жидкообразных и при достижении предела текучести РТ наступает лавинообразное разрушение структуры с последующим пластическим течением.
В упругохрупких телах течение не наблюдается, так как напряжение, при котором происходит хрупкий разрыв, достигается раньше, чем предел текучести.