Классическое определение вероятности

Как было сказано выше, при большом числе n испытаний частота P*(A)=m/n появления события A обладает устойчивостью и дает приближенное значение вероятности события A, т.е..

Это обстоятельство позволяет находить приближенно вероятность события опытным путем. Практически такой способ нахождения вероятности события не всегда удобен. В ряде случаев вероятность события удается определить до опыта с помощью понятия равновероятности событий (или равновозможности).

Два события называются равновероятными (или равновозможными), если нет никаких объективных причин считать, что одно из них может наступить чаще, чем другое.

Так, например, появления герба или надписи при бросании монеты представляют собой равновероятные события.

Рассмотрим другой пример. Пусть бросают игральную кость. В силу симметрии кубика можно считать, что появление любой из цифр 1, 2, 3, 4, 5 или 6 одинаково возможно (равновероятно).

События E 1, E 2,..., E N в данном опыте образуют полную группу, если в результате опыта должно произойти хотя бы одно из них.

Так, в последнем примере полная группа событий состоит из шести событий — появлений цифр 1, 2, 3, 4, 5 и 6.

Очевидно, любое событие A и противоположное ему событие образуют полную группу.

Событие B называется благоприятствующим событию A, если наступление события B влечет за собой наступление события A.

Так, если A — появление четного числа очков при бросании игральной кости, то появление цифры 4 представляет собой событие, благоприятствующее событию A.

Пусть события E 1, E 2,..., E N в данном опыте образуют полную группу равновероятных и попарно несовместных событий. Будем называть их исходами испытания. Предположим, что событию A благоприятствуют M исходов испытания. Тогда вероятностью события A в данном опыте называют отношение M/N. Итак, мы приходим к следующему определению.

Вероятностью P(A) события в данном опыте называется отношение числа M исходов опыта, благоприятствующих событию A, к общему числу N возможных исходов опыта, образующих полную группу равновероятных попарно несовместных событий:

Это определение вероятности часто называют классическим. Можно показать, что классическое определение удовлетворяет аксиомам вероятности.

Пример 1. На завод привезли партию из 1000 подшипников. Случайно в эту партию попало 30 подшипников, не удовлетворяющих стандарту. Определить вероятность P(A) того, что взятый наудачу подшипник окажется стандартным. (Решение)

Пример 2. В урне 10 шаров: 3 белых и 7 черных. Из урны вынимают сразу два шара. Какова вероятность р того, что оба шара окажутся белыми? (Решение)

Пример 3. В урне 2 зеленых, 7 красных, 5 коричневых и 10 белых шаров. Какова вероятность появления цветного шара? (Решение)

Геометрическое определение вероятности. Пусть в некоторую область случайным образом бросается точка T, причем все точки области W равноправны в отношении попадания точки T. Тогда за вероятность попадания точки T в область A принимается отношение

[image], (1.5)

где S (A) и S (W) — геометрические меры (длина, площадь, объем и т.д.) областей A и W соответственно.

Условная вероятность.

Случайное событие определено как событие, которое при осуществлении совокупности условий эксперимента может произойти или не произойти. Если при вычислении вероятности события никаких других ограничений, кроме условий эксперимента, не налагается, то такую вероятность называют безусловной; если же налагаются и другие дополнительные условия, то вероятность события называют условной. Например, часто вычисляют вероятность события В при дополнительном условии, что произошло событие А.

Условной вероятностью (два обозначения) называют вероятность события В, вычисленную в предположении, что событие А уже наступило.

Вероятность совместного появления двух зависимых событий равна произведению вероятности одного из них на условную вероятность второго, вычисленную при условии, что первое событие произошло, т.е.

.

Вчастности,отсюдаполучаем
.

Если событие А может произойти только при выполнении одного из событий, которые образуют полную группу несовместных событий, то вероятность события А вычисляется по формуле

.

Эта формула называется формулой полной вероятности.

Вновь рассмотрим полную группу несовместных событий, вероятности появления которых. Событие А может произойти только вместе с каким-либо из событий, которые будем называть гипотезами. Тогда по формуле полной вероятности

Если событие А произошло, то это может изменить вероятности гипотез.

По теореме умножения вероятностей

,

откуда

.

Аналогично, для остальных гипотез

Полученная формула называется формулой Байеса (формулой Бейеса). Вероятности гипотез называются апостериорными вероятностями, тогда как - априорными вероятностями.

Случайной называют величину, которая в результате испытания примет одно и только одно возможное значение, наперед не известное и зависящее от случайных причин, которые заранее не могут быть учтены.
Дискретной называют случайную величину, которая принимает отдельные, изолированные возможные значения с определенными вероятностями.
Число возможных значений дискретной случайной величины может быть конечным или бесконечным.
Законом распределения дискретной случайной величины называют соответствие между возможными значениями и их вероятностями.
Закон распределения дискретной случайной величины можно задать таблично, в виде формулы (аналитически) и графически.

Числовые характеристики дискретных случайных величин

Числа, которые описывают случайную величину суммарно, называют числовыми характеристиками случайной величины.
Математическим ожиданием дискретной случайной величины называют сумму произведений всех ее возможных значений на их вероятности:
,
где – возможные значения случайной величины, а – соответствующие вероятности.
Замечание. Вышеприведенная формула справедлива для дискретной случайной величины, число возможных значений которой конечно. Если же случайная величина имеет счетное число возможных значений, то для нахождения математического ожидания используют формулу:
,
причем это математическое ожидание существует при выполнении соответствующего условия сходимости числового ряда в правой части равенства.
Вероятностный смысл математического ожидания: математическое ожидание приближенно равно (тем точнее, чем больше число испытаний) среднему арифметическому наблюдаемых значений случайной величины.

Свойства математического ожидания

1. Математическое ожидание постоянной величины равно самой постоянной:
.
2. Постоянный множитель можно вынести за знак математического ожидания:
.
3. Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий:
.
Следствие. Математическое ожидание произведения нескольких взаимно независимых случайных величин равно произведению их математических ожиданий.
4. Математическое ожидание суммы двух случайных величин равно сумме математических ожиданий слагаемых:
.
Следствие. Математическое ожидание суммы нескольких случайных величин равно сумме математических ожиданий слагаемых.

Пусть производится независимых испытаний, в каждом из которых вероятность появления события постоянна и равна. Тогда справедлива следующая теорема.
Теорема. Математическое ожидание числа появлений события в независимых испытаниях равно произведению числа испытаний на вероятность появления этого события в каждом испытании:
.

Разность между случайной величиной и ее математическим ожиданием называется отклонением.
Теорема. Математическое ожидание отклонения равно нулю:
.
Дисперсией дискретной случайной величины называют математическое ожидание квадрата отклонения случайной величиной от ее математического ожидания:
.
Дисперсия имеет размерность, равную квадрату размерности случайной величины.
Теорема. Дисперсия равна разности между математическим ожиданием квадрата случайной величины и квадратом ее математического ожидания:
.

Свойства дисперсии

1. Дисперсия постоянной величины равно нулю:
.
2. Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат:
.
3. Дисперсия суммы двух независимых случайных величин равно сумме дисперсий этих случайных величин:
.
Следствие. Дисперсия суммы нескольких взаимно независимых случайных величин равно сумме дисперсий этих величин.
4. Дисперсия разности двух независимых случайных величин равно сумме дисперсий этих случайных величин:
.

Теорема. Дисперсия числа появлений события в независимых испытаниях, в каждом из которых вероятность появления события постоянна, равна произведению числа испытаний на вероятность появления и вероятность непоявления этого события в одном испытании:
.

Средним квадратическим отклонением случайной величины называют квадратный корень из дисперсии:
.
Размерность среднего квадратического отклонения совпадает с размерностью самой случайной величины.

Законы распределения дискретных случайных величин

Законом распределения дискретной случайной величины называется всякое соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующими вероятностями. Про случайную величину говорят, что она подчиняется данному закону распределения.

При табличном способе задания закона распределения первая строка таблицы содержит возможные значения случайной величины (обычно в порядке возрастания), а вторая – соответствующие вероятности ():

xi x1 x2 xn
pi p1 p2 pn

Бернулли: Дискретная случайная величина имеет биномиальный закон распределения (закон распределения Бернулли), если она принимает целочисленные неотрицательные значения 0, 1, 2, 3, …, m, …, n с вероятностями, вычисляемыми по формуле Бернулли:

xi     m n
pi qn     pn

где q=1-p; - число сочетаний из n элементов по m.

Пример 2. На некотором участке дороги 60% водителей соблюдают предусмотренный правилами скоростной режим. Составить закон распределения числа водителей, соблюдающих установленные ограничения по скорости, из пяти проехавших.

Случайная величина Х – число водителей, соблюдающих установленные ограничения по скорости из пяти проехавших. В n=5 независимых испытаниях вероятность того, что скоростной режим не нарушен, по условию постоянна и равна: p=0,6. Следовательно, вероятность нарушения: q=1-0,6=0,4. Тогда биномиальный закон распределения числа водителей имеет вид:

xi            
pi 0,01024 0,0768 0,2304 0,3456 0,2592 0,07776

Пуассона: Дискретная случайная величина имеет закон распределенияПуассона с параметром, если она принимает целочисленные неотрицательные значения 0, 1, 2, 3, …, m, … с вероятностями, вычисляемыми по формуле Пуассона. Т. к. вероятность наступления события в каждом испытании мала (при), закон распределения Пуассона еще называют законом редких событий.

xi     m
pi      

Пример 3. Вероятность попадания в цель при одном выстреле равна 0,015. Сделано 600 выстрелов. Какова вероятность того, что число попаданий в цель не меньше 7 и не большее 10?

В данном случае. Предполагая закон распределения Пуассона, имеем:

xi        
pi 0,1171 0,1318 0,1318 0,1186

Следовательно,.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: