Заключение. Сравнительный анализ белковых доменов в трех надцарствах (Archaea, Bacteria, Eukaryota) подтверждает симбиогенетическую теорию происхождения эвкариот

Сравнительный анализ белковых доменов в трех надцарствах (Archaea, Bacteria, Eukaryota) подтверждает симбиогенетическую теорию происхождения эвкариот. От архей эвкариоты унаследовали многие ключевые компоненты информационных систем нуклеоцитоплазмы. Бактериальные эндосимбионты (митохондрии и пластиды) внесли большой вклад в формирование метаболитических и сигнально-регуляторных систем не только в органеллах, но и в цитоплазме. Однако еще до приобретения эндосимбионтов археи – предки нуклеоцитоплазмы - получили многие белковые комплексы с метаболитическими и сигнально-регуляторными функциями путем латерального переноса от различных бактерий. По-видимому, в эволюции предков нуклеоцитоплазмы был период дестабилизации, во время которого изоляционные барьеры резко ослабли. В течение этого периода происходила интенсивная инкопрорация чужеродного генетического материала. В роли «спускового крючка» цепочки событий, приведших к появлению эвкариот, выступил кризис прокариотных сообществ, вызванный переходом цианобактерий к кислородному фотосинтезу.

Список литературы

Гусев М.В., Минеева Л.А. Микробиология. Третье издание. М.: Изд-во МГУ, 1992.

Домарадский И.В. Молекулярно-биологические основы изменчивости Helicobacter pylori // Журнал микробиологии, 2002, № 3,С. 79-84.

Заварзин Г.А. Развитие микробных сообществ в истории Земли // Проблемы доантропогенной эволюции биосферы. М.: Наука, 1993. С. 212-222.

Литошенко А.И. Эволюция митохондрий // Цитология. Генетика. 2002. Т. 36. № 5. С. 49-57.

Маргелис Л. 1983. Роль симбиоза в эволюции клетки. М.: Мир. 352 с.

Марков А.В. Проблема происхождения эукариот // Палеонтол. журн. В печати.

Раутиан А.С. Палеонтология как источник сведений о закономерностях и факторах эволюции // Современная палеонтология. М.: Недра, 1988. Т.2. С. 76-118.

Федоров В.Д. Сине-зеленые водоросли и эволюция фотосинтеза // Биология сине-зеленых водорослей. 1964.

Bernhard J.M., Buck K.R., Farmer M.A., Bowser S.S. The Santa Barbara Basin is a symbiosis oasis // Nature. 2000. V. 403. № 6765. P. 77-80.

Brocks J.J., Logan G.A., Buick R., Summons R.E. Archean molecular fossils and the early rise of eukaryotes // Science. 1999. V. 285. № 5430. P. 1025-1027.

Brochier C., Forterre P., Gribaldo S. Archaeal phylogeny based on proteins of the transcription and translation machineries: tackling the Methanopyrus kandleri paradox // Genome Biol. 2004. V.5. N 3. P. R17.

Canback B., Andersson S. G. E., Kurland, C. G. The global phylogeny of glycolytic enzymes // Proc. Natl. Acad. Sci. U. S. A. 2002. N 99. P. 6097-6102.

Cavalier-Smith T. The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification // Int. J. Syst. Evol. Microbiol. 2002. № 52. Pt 1. P. 7-76.

Coulson R.M., Enright A.J., Ouzounis C.A. Transcription-associated protein families are primarily taxon-specific // Bioinformatics. 2001. V.17. N 1. P. 95-97.

Dohlen C.D., von, Kohler S., Alsop S.T., McManus W.R. Mealybug beta-proteobacterial endosymbionts contain gamma-proteobacterial symbionts // Nature. 2001. V. 412. N 6845. P. 433-436.

Dolan M.F., Melnitsky H., Margulis L., Kolnicki R. Motility proteins and the origin of the nucleus // Anat. Rec. 2002. N 268. P. 290-301.

Duval B., Margulis L. The microbial community of Ophrydium versatile colonies: endosymbionts, residents, and tenants // Symbiosis. 1995. N 18. P. 181-210.

Dyall S.D., Brown M.T., Johnson P.J. Ancient Invasions: From Endosymbionts to Organelles // Science. 2004. V. 304. N 5668. P. 253-257.

Dyall S.D., Johnson P.J. Origins of hydrogenosomes and mitochondria: evolution and organelle biogenesis // Curr. Opin. Microbiol. 2000. V. 3. N 4. P. 404-411.

Ent F., van den, Amos L.A., Lцwe J. Prokaryotic origin of the actin cytoskeleton // Nature. 2001. V. 413. N 6851. P. 39-44.

Esser C., Ahmadinejad N., Wiegand C. et al. A Genome Phylogeny for Mitochondria Among Alpha-Proteobacteria and a Predominantly Eubacterial Ancestry of Yeast Nuclear Genes // Mol. Biol. Evol. 2004. V. 21. N 9. P.1643-1660.

Feng D.F., Cho G., Doolittle R.F. Determining divergence times with a protein clock: Update and reevaluation // Proc. Natl. Acad. Sci. USA. 1997. V. 94. P. 13028-13033.

Gabaldуn T., Huynen M.A. Reconstruction of the Proto-Mitochondrial Metabolism // Science. 2003. V. 301. N 5633. P. 609.

Gray M.W., Burger G., Lang B.F. Mitochondrial Evolution // Science. 1999. V. 283. N 5407. P. 1476-1481.

Gupta R.S. Protein Phylogenies and Signature Sequences: A Reappraisal of Evolutionary Relationships among Archaebacteria, Eubacteria, and Eukaryotes // Microbiology and Molecular Biology Reviews. 1998. V. 62. N 4. P. 1435-1491.

Guerrero R., Pedros-Alio C., Esteve I. et al. Predatory prokaryotes: predation and primary consumption evolved in bacteria // Proc. Nat. Acad. Sci. USA. 1986. N 83. P. 2138-2142.

Hartman H., Fedorov A. The origin of the eukaryotic cell: a genomic investigation // Proc. Nat. Acad. Sci. USA. 2002. V. 99. N 3. P. 1420-1425.

Helenius A., Aebi M. Intracellular functions of N-linked glycans // Science. 2001. V. 291. N 5512. P. 2364-2369.

Jenkins C., Samudrala R., Anderson I. et al. Genes for the cytoskeletal protein tubulin in the bacterial genus Prosthecobacter. // Proc. Natl. Acad. Sci. U S A. 2002. V. 99. N 26. P. 17049-17054.

Kurland C.G., Andersson S.G.E. Origin and Evolution of the Mitochondrial Proteome // Microbiology and Molecular Biology Reviews. 2000. V. 64. N. 4. P. 786-820.

Margulis L., Bermudes D. Symbiosis as a mechanism of evolution: status of cell symbiosis theory // Symbiosis. 1985. N 1. P. 101-124.

Margulis L., Dolan M.F., Guerrero R. The chimeric eukaryote: origin of the nucleus from the karyomastigont in amitochondriate protists // Proc. Natl. Acad. Sci. U S A. 2000. V. 97. N 13. P. 6954-6959.

Martin W. Gene transfer from organelles to the nucleus: Frequent and in big chunks // Proc. Natl. Acad. Sci. U.S.A. 2003. V. 100. N 15. P. 8612-8614.

Martin W., Muller M. The hydrogen hypothesis for the first eukaryote // Nature. 1998. N 392. P.37-41.

Martin W., Russell M.J. On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells // Phil. Trans. R. Soc. Lond. B. Biol. Sci. 2003. V. 358. N 1429. P. 59-85.

Martin W, Schnarrenberger C. The evolution of the Calvin cycle from prokaryotic to eukaryotic chromosomes: a case study of functional redundancy in ancient pathways through endosymbiosis // Curr Genet. 1997. V. 32. N 1. P. 1-18.

Mayer F. Cytoskeletons in prokaryotes // Cell. Biol. Int. 2003. V. 27. N 5. P. 429-438.

Ng W.V., Kennedy S.P., Mahairas G.G. et al. Genome sequence of Halobacterium species NRC-1 // Proc. Natl. Acad. Sci. U S A. 2000. V. 97. N 22. P. 12176-12181.

Noon K.R., Guymon R., Crain P.F. et al. Influence of temperature on tRNA modification in archaea: Methanococcoides burtonii (optimum growth temperature [Topt], 23 degrees C) and Stetteria hydrogenophila (Topt, 95 degrees C) // J. Bacteriol. 2003. V. 185. N 18. P. 5483-5490.

Nugent J.M., Palmer J.D. RNA-mediated transfer of the gene coxII from the mitochondrion to the nucleus during flowering plant evolution // Cell. 1991. V. 66. N 3. P. 473-481.

Slesarev A.I., Belova G.I., Kozyavkin S.A., Lake J.A. Evidence for an early prokaryotic origin of histones H2A and H4 prior to the emergence of eukaryotes // Nucleic Acids Res. 1998. V. 26. N 2. P. 427-430.

Theissen U., Hoffmeister M., Grieshaber M., Martin W. Single Eubacterial Origin of Eukaryotic Sulfide:Quinone Oxidoreductase, a Mitochondrial Enzyme Conserved from the Early Evolution of Eukaryotes During Anoxic and Sulfidic Times // Mol. Biol. Evol. 2003. V. 20. N 9. P. 1564-1574.

Vellai T., Takacs K., Vida G. A new aspect to the origin and evolution of eukaryotes // J. Mol. Evol. 1998. V. 46. N 5. P. 499-507.

Vellai T., Vida G. The origin of eukaryotes: the difference between prokaryotic and eukaryotic cells // Proc. R. Soc. Lond. B Biol. Sci. 1999. V. 266. N 1428. P. 1571-1577.

Walden W.E. From bacteria to mitochondria: Aconitase yields surprises // Proc. Natl. Acad. Sci. U. S. A. 2002. N 99. P. 4138-4140.

Здесь и далее «доменами архейного происхождения» условно будут называться домены, имеющиеся у эвкариот и архей, но отсутствующие у бактерий. Соответственно, домены, имеющиеся у бактерий и эвкариот, но отсутствующие у архей, будем называть «доменами бактериального происхождения».

var openstat = { counter: 2048909, next: openstat }; document.write(unescape("%3Cscript%20src=%22http" + (("https:" == document.location.protocol)? "s": "") + "://openstat.net/cnt.js%22%20defer=%22defer%22%3E%3C/script%3E"));


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: