Радиоэлектронные каналы утечки информации

В радиоэлектронном канале передачи носителем информации является электрический ток и электромагнитное поле с частотами колебаний от звукового диапазона до десятков ГГц.

Радиоэлектронный канал относится к наиболее информативным каналам утечки в силу следующих его особенностей:

· независимость функционирования канала от времени суток и года, существенно меньшая зависимость его параметров по сравнению с другими каналами от метеоусловий:

· высокая достоверность добываемой информации, особенно при перехвате ее в функциональных каналах связи (за исключением случаев дезинформации);

· большой объем добываемой информации;

· оперативность получения информации вплоть до реального масштаба времени;

· скрытность перехвата сигналов и радиотеплового наблюдения.

В радиоэлектронном канале производится перехват радио и электрических сигналов, радиолокационное и радиотепловое наблюдение. Следовательно, в рамках этого канала утечки добывается семантическая информация, видовые и сигнальные демаскирующие признаки. Радиоэлектронные каналы утечки информации используют радио, радиотехническая, радиолокационная и радиотепловая разведка.

Структура радиоэлектронного канала утечки информации в общем случае включает источник сигнала или передатчик, среду распространения электрического тока или электромагнитной волны и приемник сигнала (рис.32).

 
 

В радиоэлектронных каналах утечки информации источники сигналов могут быть четырех видов:

· передатчики функциональных каналов связи;

· источники опасных сигналов;

· объекты, отражающие электромагнитные волны в радиодиапазоне;

· объекты, излучающие собственные (тепловые) радиоволны в радиодиа­пазоне.

Средой распространения радиоэлектронного канала утечки информации являются атмосфера, безвоздушное пространство и направляющие - электрические провода различных типов и волноводы. Носитель в виде электрического тока распространяется по проводам, а электромагнитное поле - в атмосфере, в безвоздушном пространстве или по направляющим - волноводам. В приемнике производится выделение (селекция) носителя с интересующей получателя информацией по частоте, усиление выделенного слабого сигнала и съем с него информации - демодуляция.

При перехвате сигналов функциональных каналов связи передатчики этих каналов являются одновременно источниками радиоэлектронных каналов утечки информации. В общем случае направления распространения электромагнитной волны от передатчика к санкционированному получателю и злоумышленнику отличаются. В функциональных каналах связи максимум излучения энергии электромагнитной волны ориентируют в направлении расположения приемника санкционированного получателя. Поэтому мощность источника сигналов радиоэлектронного канала утечки информации, как правило, существенно меньше мощности излучения в функциональном канале связи. В зависимости от способа перехвата информации различают два вида радиоэлектронного канала утечки информации.

В канале утечки первого вида производится перехват информации, передаваемой по функциональному каналу связи. С этой целью приемник сигнала канала утечки информации настраивается на параметры сигнала функционального радиоканала или подключается (контактно или дистанционно) к проводам соответствующего функционального канала. Такой канал утечки имеет общий с функциональным каналом источник сигналов - передатчик. Так как места расположения приемников функционального канала и канала утечки информации в общем случае не совпадают, то среды распространения сигналов в них от общего передатчика различные или совпадают, например, до места подключения приемника злоумышленника к проводам телефонной сети.

Радиоэлектронный канал утечки 2-го вида имеет собственный набор элементов: передатчик сигналов, среду распространения и приемник сигналов. Передатчик этого канала утечки информации образуется случайно (без участия источника или получателя информации) или специально устанавливается в помещении злоумышленником. В качестве такого передатчика применяются источники опасных сигналов и закладные устройства. Опасные сигналы, как отмечалось ранее, возникают на базе акустоэлектрических преобразователей, побочных низкочастотных и высокочастотных полей, паразитных связей и наводок в проводах и элементах радиосредств. Предпосылки для них создаются в результате конструктивных недоработок при разработке радиоэлектронного средства, объективных физических процессов в их элементах, изменениях параметров в них из-за старения или нарушений правил эксплуатации, не учете полей вокруг средств или токонесущих проводов при их прокладке в здании и т. д.

Особенностями передатчиков этого канала являются малые амплитуда электрических сигналов - единицы и доли мВ и мощность радиосигналов, не превышающая десятки мВт (для радиозакладок). В результате этого протяженность таких каналов невелика и составляет десятки и сотни метров. Поэтому для добывания информации с использованием такого канала утечки приемник необходимо приблизить к источнику на величину длины канала утечки или установить ретранслятор. Среда распространения и приемники этого вида каналов не отличаются от среды и приемников каналов первого вида.

Электрические сигналы как носители информации могут быть аналоговыми или дискретными, их спектр может содержать частоты от десятков Гц до десятков ГГц.

В атмосфере и безвоздушном пространстве радиоэлектронного канала утечки информации ее носителями являются поля: в ближней зоне источника поля - электрическое и магнитное, в дальней зоне - электромагнитное.

По частоте электромагнитные волны классифицируются в соответствии с Регламентом радиосвязи, утвержденным на Всемирной административной конференции в Женеве в 1979 г. (табл.7).

Таблица 7.

Диапазон длин волн   Обозначение и наименование частот Диапазон частот
> 100 км - ELF-чрезвычаино низкие Доли Гц-3 кГц
10-100 км Мириаметровые VLF(OHЧ) - очень низкие 3-30 кГц
1-10 км Километровые (длинные) LF(HЧ) - низкие 30-300 кГц
100-1000м Гектаметровые (средине) MF(CЧ) - средние 300-3000 кГц
10-100 м Декаметровые (короткие) HF(BЧ) - высокие 3-30 МГц
1-10 м Метровые (ОВЧ) - очень высокие 30-300 МГц
10-100 см Дециметровые UНF(УВЧ) - ультравысокие 300-3000 МГц
1-10 см Сантиметровые SHF(CBЧ) - сверхвысокие 3-30 ГГц
1-10 мм Миллиметровые ЕНF(КВЧ)- крайне высокие 30-300 ГГц
0.1-1 мм Децимиллиметровые ГВЧ - гипервысокие 300-3000 ГГц

Примечание. Электромагнитные волны длиной менее 10 м называют также ультракороткими (УКВ).

Радиоволны в зависимости от условий распространения делятся на земные (поверхностные), прямые, тропосферные и ионосферные (пространственные).

Земными называются радиоволны, которые распространяются в непосредственной близости от поверхности Земли и частично огибают ее поверхность в результате дифракции. Прямыми названы радиоволны, распространяющиеся прямолинейно в атмосфере и космосе.

Радиоволны, которые распространяются в тропосфере - неоднородной приземной области атмосферы не выше 10-12 км от поверхности Земли, называются тропосферными. В тропосфере происходит рассеивание, а также частичное искривление траектории и отражение радиоволн от неоднородностей тропосферы.

Ионосферными называют радиоволны, распространяющиеся в результате преломления их в ионосфере и отражений от земной поверхности. Ионосферу образуют ионизированные под действием ультрафиолетового излучения Солнца верхние слои атмосферы.

За счет многократного преломления радиоволн в ионосфере и отражения от земной поверхности электромагнитная волна может распространяться на большие расстояния, вплоть до огибания Земли. Но при таком распространении волны на земной поверхности возникают зоны молчания, в которые не попадают отраженные от ионосферы электромагнитные волны. В зонах приема происходит интерференция волн, прошедших разный путь от излучателя и имеющих, следовательно, различные фазы. Случайный характер изменения фаз приводит к случайному изменению амплитуды результирующей волны, которое называется замиранием или федингом.

В зависимости от частоты колебания радиоволн характеристики среды распространения имеют следующие особенности.

1. Километровые (длинные) волны подвержены дифракции, сравнительно слабо поглощаются земной поверхностью и могут распространяться поверхностным лучом на расстояние до 3000 км. В ионосфере они затухают сильнее, но могут отражаться от слоя Е и распространяться пространственным лучом на большее расстояние. К преимуществам электромагнитной волны в этом диапазоне как носителя информации относится, кроме большой дальности распространения, сравнительное постоянство напряженности поля в пункте приема в течение суток и года, что обеспечивает устойчивость связи. Эти волны применяются также для связи под водой, где плохо распространя­ются волны более высоких частот.

Недостатком длинноволновой радиолинии является плохая излучательная способность антенн, их большие размеры, достигающие несколько сотен метров, высокий уровень атмосферных и промышленных помех и малая пропускная способность.

2. Гектометровые (средние) волны могут распространяться поверхностным и пространственным лучами. Энергия средних волн поглощаются земной поверхностью сильнее, чем энергия длинноволновых, поэтому дальность связи поверхностным лучом составляет примерно 500-1500 км. Однако для средних волн создаются более благоприятные условия распространения пространственным лучом и прием сигналов возможен до 4000 км.

3. При распространении коротких волн дальность поверхностного луча невелика из-за резкого возрастания поглощения энергии землей. Поле в точке приема создается в основном за счет преломления в различных слоях ионосферы. В результате флюктуации плотности и высоты слоев и взаимодействия лучей на коротких волнах наблюдаются, как правило, глубокие замирания и даже полное пропадание связи в течение единиц и десятков секунд.

Достоинством коротких волн является возможность обеспечения связи на очень большие расстояния при сравнительно малых мощности передатчика и габаритах антенны, а также малое влияние атмосферных и промышленных помех. Они применяются для связи, радионавигации, радиовещания и радиолюбителями.

4. В диапазоне ультракоротких (метровых и более коротких) волн практически отсутствует дифракция. Поэтому они распространяются в пределах прямой видимости, в том числе отражаясь от земли и тропосферы с потерей части энергии на поглощение. Радиоволны в этих диапазонах являются основными носителями информации в сетях телекоммуникаций человечества в силу следующих особенностей:

· имеют широкий частотный диапазон (см. табл.), обеспечивающий возможность передачи большого объема информации, в том числе путем использования широкополосных каналов;

· низкий уровень атмосферных и промышленных помех, позволяющих использовать приемные устройства с высокой чувствительностью, что повышает дальность приема;

· слабое влияние станционных помех на работу других радиосистем вследствие ограниченности их радиуса видимости;

· возможность создания небольших антенн с узкой диаграммой направленности, позволяющих осуществлять радиосвязь при относительно малой мощности передающих устройств.

Основной недостаток радиоволн рассматриваемого диапазона - существенно большее поглощение их в атмосфере, в том числе природными осадками (дождем, туманом, снегом, градом), особенно в миллиметровом диапазоне, и, как следствие, относительно малая дальность распространения.

При распространении радиоволн в городе характер их распространения существенно искажается по сравнению с распространением на открытых пространствах за счет многочисленных переотражений от стен зданий и помещений и затухания в них. Эти обстоятельства необходимо учитывать при оценке пространственной ориентации и возможностей каналов утечки информации. Экранирующие свойства некоторых элементов здания приведены в табл. 8.

Таблица 8.

Тип здания Ослабление, дБ на частоте
100 МГц 500 МГц 1 ГГц
Деревянное здание с толщиной стен 20 см 5-7 7-9 9-11
Кирпичное здание с толщиной стен 1.5 кирпича 13-15 5-17 16-19
Железобетонное здание с ячейкой арматуры 15х15 см н толщиной 160 мм 20-25 18-19 15-17

Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: