Электромагнитными волнами называется процесс распространения в пространстве переменного электромагнитного поля. Теоретически существование электромагнитных волн предсказано английским ученым Максвеллом в 1865 г., а впервые они экспериментально получены немецким ученым Герцем в 1888 г.
Из теории Максвелла вытекают формулы, описывающие колебания векторов и. Плоская монохроматическая электромагнитная волна, распространяющаяся вдоль оси x, описывается уравнениями

Здесь E и H - мгновенные значения, а E m и H m - амплитудные значения напряженности электрического и магнитного полей, ω - круговая частота, k - волновое число. Векторы
и
колеблются с одинаковой частотой и фазой, взаимно перпендикулярны и, кроме того, перпендикулярны вектору
- скорости распространения волны (рис. 3.7). Т. е. электромагнитные волны поперечны.

В вакууме электромагнитные волны распространяются со скоростью. В среде с диэлектрической проницаемостью ε и магнитной проницаемостью µ скорость распространения электромагнитной волны равна:

Частота электромагнитных колебаний, так же, как и длина волны, могут быть в принципе любыми. Классификация волн по частоте (или длине волны) называется шкалой электромагнитных волн. Электромагнитные волны делятся на несколько видов.
Радиоволны имеют длину волны от 103 до 10-4 м.
Световые волны включают:
| инфракрасное излучение, | |
видимый свет в интервале , | |
| ультрафиолетовое излучение. |
Гамма-излучение имеет длину волны < 10-12 м .
Световые волны - это электромагнитные волны, которые включают в себя инфракрасную, видимую и ультрафиолетовую части спектра. Длины световых волн в вакууме, соответствующие основным цветам видимого спектра, указаны в нижеприведенной таблице. Длина волны дана в нанометрах.
Таблица
| Цвет | Длина волны, нм | Цвет | Длина волны, нм |
| красный | 760 - 620 | голубой | 510 - 480 |
| оранжевый | 620 - 590 | синий | 480 - 450 |
| желтый | 590 - 575 | фиолетовый | 450 - 380 |
| зеленый | 575 - 510 |
Для световых волн характерны те же свойства, что и для электромагнитных волн.
1. Световые волны поперечны.
2. В световой волне колеблются вектора
и.
Опыт показывает, что все виды воздействий (физиологическое, фотохимическое, фотоэлектрическое и др.) вызываются колебаниями электрического вектора
. Его называют световым вектором.

Амплитуду светового вектора E m часто обозначают буквой A и вместо уравнения (3.30) используют уравнение (3.24).
3. Скорость света в вакууме.
Скорость световой волны в среде определяется по формуле (3.29). Но для прозрачных сред (стекло, вода) обычно.
Для световых волн вводится понятие - абсолютный показатель преломления.
Абсолютным показателем преломления называется отношение скорости света в вакууме к скорости света в данной среде

Из (3.29), с учетом того, что для прозрачных сред
, можно записать равенство.
Для вакуума ε = 1 и n = 1. Для любой физической среды n > 1. Например, для воды n = 1,33, для стекла
. Среда с большим показателем преломления называется оптически более плотной. Отношение абсолютных показателей преломления называется относительным показателем преломления:

4. Частота световых волн очень велика. Например, для красного света с длиной волны.
При переходе света из одной среды в другую частота света не изменяется, но изменяется скорость и длина волны.
Для вакуума -
; для среды -
, тогда
.
Отсюда длина волны света в среде равна отношению длины волны света в вакууме к показателю преломления

5. Поскольку частота световых волн очень велика
, то глаз наблюдателя не различает отдельных колебаний, а воспринимает усредненные потоки энергии. Таким образом вводится понятие интенсивности.
Интенсивностью называется отношение средней энергии, переносимой волной, к промежутку времени и к площади площадки, перпендикулярной направлению распространения волны:

Поскольку энергия волны пропорциональна квадрату амплитуды (см. формулу (3.25)), то интенсивность пропорциональна среднему значению квадрата амплитуды

Характеристикой интенсивности света, учитывающей его способность вызывать зрительные ощущения, является световой поток - Ф.
6. Волновая природа света проявляется, например, в таких явлениях, как интерференция и дифракция.
,
.