Перекрытие изоляторов при загрязненной и увлажненной поверхности

В условиях эксплуатации поверхности изоляторов всегда загрязняются. Однако, как правило, сухие загрязнения не оказывают заметного влияния на разрядные напряжения изоляторов, так как слой загрязнения имеет высокое сопротивление и не влияет на распределение напряжения по поверхности изолятора. Увлажнение слоя загрязнения моросящим дождем или росой приводит к уменьшению сопротивления слоя загрязнения, изменению распределения напряжения по поверхности изолятора и в результате этого к снижению разрядного напряжения.

Сильный дождь смывает загрязнения, однако и в этом случае на поверхности изолятора образуется пленка влаги, обладающая сопротивлением хотя и большим, но близким к сопротивлению увлажненного слоя загрязнения. Это также приводит к снижению разрядного напряжения.

Механизмы перекрытия изолятора под дождем и при загрязненной и увлажненной поверхности сходны. Рассмотрим развитие разряда в случае, когда поверхность изолятора загрязнена и увлажнена.

Под действием приложенного к изолятору напряжения по увлажненному слою загрязнения проходит ток утечки, нагревающий его. Так как загрязнение распределено по поверхности изолятора неравномерно и плотность тока утечки неодинакова на отдельных участках изолятора из-за сложной конфигурации его поверхности, то нагревание слоя загрязнения происходит также неравномерно. На тех участках изолятора, где плотность тока наибольшая, а загрязняющий слой тоньше, происходит интенсивное испарение воды и образуются подсушенные участки с повышенным сопротивлением. Распределение напряжения по поверхности изолятора меняется. Почти все напряжение, воздействующее на изоляцию, оказывается приложенным к подсушенным участкам. В результате этого подсушенные участки перекрываются искровыми каналами, называемыми частичными дугами. Сопротивление искрового канала меньше сопротивления подсушенного участка поверхности изолятора, поэтому ток утечки возрастает. Возрастание тока утечки приводит к дальнейшему подсушиванию слоя загрязнения, а следовательно, и к увеличению его сопротивления. Наряду с этим происходит интенсивное подсушивание поверхности у концов дуг, что приводит к их удлинению. Подсушивание всей поверхности изолятора ведет к снижению тока утечки, а увеличение длины частичных дуг—к его росту. Если результатом этого будет уменьшение тока утечки, то частичные дуги погаснут, если же ток утечки будет расти, то частичные дуги будут удлиняться и перекроют весь изолятор. Так как параметры частичной дуги, как и количество дуг, одновременно существующих на поверхности изолятора, случайны, то и перекрытие также является случайным событием, характеризуемым определенной вероятностью. Вероятность перекрытия изолятора повышается с увеличением воздействующего напряжения, так как при этом возрастает ток утечки, что благоприятствует удлинению частичных дуг до полного перекрытия изолятора.

Из приведенной картины развития разряда следует, что разрядные напряжения изоляторов будут тем выше, чем меньше ток утечки. Следовательно, разрядное напряжение изолятора будет возрастать с увеличением длины пути утечки и уменьшением диаметра изолятора.

Так как процессы подсушки поверхности изолятора происходят относительно медленно, то при кратковременных перенапряжениях они не успевают развиться и напряжение перекрытия бывает выше, чем при длительном воздействии напряжения. При грозовых импульсах дождь и увлажнение загрязненной поверхности изолятора практически не влияют на его разрядные напряжения.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: