Уравнение состояния

Для одного моля газа Ван-дер-Ваальса оно имеет вид:

где — давление, — молярный объём, — абсолютная температура, — универсальная газовая постоянная.Для молей газа Ван-дер-Ваальса уравнение состояния выглядит так:

где — объём.

#4 (1)

где α — разность фаз обоих колебаний, А и В равны амплитудам складываемых колебаний.

и заменяя во втором уравнении на и на (2)

Поскольку траектория результирующего колебания имеет форму эллипса, то такие колебания называются эллиптически поляризованными.

Размеры осей эллипса и его ориентация зависят от амплитуд складываемых колебаний и разности фаз α. Рассмотрим некоторые частные случаи, которые представляют для нас физический интерес:

1) α = mπ (m=0, ±1, ±2,...). В этом случае эллипс становится отрезком прямой

(3)

где знак плюс соответствует нулю и четным значениям m (рис. 1а), а знак минус — нечетным значениям m Результирующее колебание есть гармоническое колебание с частотой ω и амплитудой, которое совершается вдоль прямой (3), составляющей с осью х угол. В этом случае имеем дело с линейно поляризованными колебаниями;

2) α = (2m+1)(π/2) (m=0, ± 1, ±2,...). В этом случае уравнение станет иметь вид

(4)

Это есть уравнение эллипса, у которого оси совпадают с осями координат, а его полуоси равны соответствующим амплитудам Если А=В, то эллипс (4) превращается в окружность. Такие колебания называются циркулярно поляризованными колебаниями или колебаниями, поляризованными по кругу. Если частоты складываемых взаимно перпендикулярных колебаний имеют различные значения, то замкнутая траектория результирующего колебания довольно сложна. Замкнутые траектории, прочерчиваемые точкой, которая совершает одновременно два взаимно перпендикулярных колебания, называются фигурами Лиссажу. Вид этих замкнутых кривых зависит от соотношения амплитуд, разности фаз и частот складываемых колебаний. На рис. 3 даны фигуры Лиссажу для различных соотношений частот и разностей фаз (даны вверху; разность фаз равна φ).

В плоской бегущей звуковой волне , где р - звуковое давление, - плотность среды. Величина . Напр., вблизи двигателя реактивного самолёта м/с, тогда как в воздухе с=342 м/с:

Абсолютная деформация выражает абсолютное изменение какого-либо линейного или углового размера, площади сечения или участка граничной поверхности элемента, выделенного в деформируемом теле, или всего тела.

Относительная деформация характеризует относительное изменение тех же величин. Обычно относительную деформацию определяют как отношение абсолютного изменения какого-либо размера к его первоначальному значению.

Теплоёмкость тела (— физическая величина, определяемая отношением бесконечно малого количества теплоты δ Q, полученного телом, к соответствующему приращению его температуры δ T

теплоемкость при постоянном объеме равна изменению внутренней энергии газа при изменении температуры на 1 К.

Если газ идеальный, то в формуле (2)

Тогда молярная теплоемкость при постоянном объеме

— изменение внутренней энергии 1 моль газа. Из этих равенств теплоемкость газа при постоянном объеме —

молярная теплоемкость газа при постоянном объеме —

Если газ нагревается при постоянном давлении, то согласно первому закону термодинамики

где

Тогда теплоемкость газа при постоянном давлении

Молярная теплоемкость при постоянном давлении:

Таким образом, теплоемкость при постоянном давлении всегда больше теплоемкости при постоянном объеме. Их отношение равно

где — показатель адиабаты (коэффициент Пуассона).

Пове́рхностное натяже́ние — термодинамическая характеристика поверхности раздела двух находящихся в равновесии фаз, определяемая работой обратимого изотермокинетического образования единицы площади этой поверхности раздела при условии, что температура, объём системы и химические потенциалы всех компонентов в обеих фазах остаются постоянными. рассмотрим случай, когда поверхность жидкости в сосуде принимает форму выпуклого мениска (рис. 6.14). Пусть – сила поверхностного натяжения, действующая по касательной к поверхности жидкости, R – радиус кривизны поверхности мениска, r – радиус кривизны сечения мениска горизонтальной плоскостью. Силу можно разложить на две составляющие и . Очевидно, что при суммировании по периметру мениска все составляющие дадут ноль, и давление Лапласа будет обусловлено суммарным действием составляющих . Найдем составляющую и проведем суммирование по контуру, ограничивающему мениск в горизонтальном сечении, имея в виду, что сила поверхностного натяжения , где Δ l – элемент длины контура.

,
.

Действие этой силы приходится на круговое сечение мениска площадью Следовательно, избыточное давление Лапласа, обусловленное кривизной поверхности и действием сил поверхностного натяжения, равно

.

Можно обобщить полученную формулу на случай более сложной поверхности. В общем случае давление Лапласа определяется соотношением

,

где R 1 и R 2 – радиусы кривизны двух взаимно перпендикулярных сечений мениска.

Если поверхность мениска имеет цилиндрическую форму, то один из радиусов кривизны сечения можно считать равным бесконечности. Для этого частного случая давление Лапласа равно

.

В случае мыльного пузырька дополнительное давление, которое испытывает находящийся внутри него газ, равно , так как у пузырька две поверхности – наружная и внутренняя, каждая из которых создает дополнительное давление Лапласа.

#5Пусть имеется система, состоящая из пружины (подчиняющейся закону Гука), один конец которой жёстко закреплён, а на другом находится тело массой m. Колебания совершаются в среде, где сила сопротивления пропорциональна скорости с коэффициентом c (см. вязкое трение).

Тогда второй закон Ньютона для рассматриваемой системы запишется так:

где — сила сопротивления, — сила упругости

, , то есть

или в дифференциальной форме

где k — коэффициент упругости в законе Гука, c — коэффициент сопротивления, устанавливающий соотношение между скоростью движения грузика и возникающей при этом силой сопротивления.

Для упрощения вводятся следующие обозначения:

Величину называют собственной частотой системы, — коэффициентом затухания.

Тогда дифференциальное уравнение принимает вид

Сделав замену , получают характеристическое уравнение

Корни которого вычисляются по следующей формуле

Волновое уравнение − линейное дифференциальное уравнение в частных производных, описывающее малые колебания струны, колебательные процессы в сплошных средах и в электродинамике.
В общем случае волна, распространяющаяся в пространстве, описывается уравнением

(1)

где u = u(x,y,z,t) − возмущение в точке x,y,z в момент времени t, v − скорость распространения волны. Уравнение (1) инвариантно относительно замены v → -v.

Адиабати́ческий,— термодинамический процесс в макроскопической системе, при котором система не обменивается теплотой с окружающим пространствомЕсли термодинамический процесс в общем случае являет собой три процесса — теплообмен, совершение системой (или над системой) работы и изменение её внутренней энергии[5], то адиабатический процесс в силу отсутствия теплообмена () системы со средой сводится только к последним двум процессам[6]. Поэтому, первое начало термодинамики в этом случае приобретает вид[7][Комм 1]

где — изменение внутренней энергии тела, — работа, совершаемая системой.

Изменения энтропии S системы в обратимом адиабатическом процессе вследствие передачи тепла через границы системы не происходит[8]:

Здесь — температура системы, — теплота, полученная системой. Благодаря этому адиабатический процесс может быть составной частью обратимого цикла[

Уравнение Клапейрона — Клаузиуса — термодинамическое уравнение, относящееся к квазистатическим (равновесным) процессам перехода вещества из одной фазы в другую (испарение, плавление, сублимация, полиморфное превращение и др.). Согласно уравнению, теплота фазового перехода (например, теплота испарения, теплота плавления) при квазистатическом процессе определяется выражением

где — удельная теплота фазового перехода, — изменение удельного объёма тела при фазовом переходе.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: