Расчёт категории опасности промышленного объекта

Для установления целесообразности и приоритетности разработки нормативов ПДВ рассчитывают категорию опасности предприятий (КОП) для окружающей среды по формуле

, (3.1)

где n - количество загрязняющих веществ, выбрасываемых предприятием; Мi - масса годового выброса j-го вещества, т/год; ПДКi - среднесуточная ПДК i-го вещества, мг/м3; αi - безразмерный коэффициент, позволяющий привести степень вредности i-го вещества к вредности диоксида серы. Для вещества 1-го класса опасности αi = 1,7; для 2, 3 и 4-го классов 1,3; 1,0 и 0,9 соответственно. Значения КОП рассчитываются при условии, когда > 1, при < 1 КОП не рассчитываются и приравниваются к нулю.

При отсутствии среднесуточных значений ПДК для расчета КОП могут использоваться значения максимальных разовых ПДК, либо уменьшенные в 10 раз значения ПДК воздуха рабочей зоны.

По величине КОП предприятия подразделяются на четыре категории опасности с граничными значениями, представленными в табл. 3.1.

Таблица 3.1

Категории опасности предприятий

Категория опасности предприятия Значения КОП
  КОП > 106
  106 > КОП > 104
  104 > КОП > 103
  КОП < 103

Предприятия 1-й и 2-й категории представляют собой наибольшую опасность для окружающей среды, к ним необходимо применять особые требования при разработке нормативов ПДВ и ежегодном контроле за их достижением. Для этих предприятий тома ПДВ разрабатываются по полной программе рекомендаций по оформлению и содержанию проекта нормативов предельно допустимых выбросов в атмосферу для предприятия [8].

Предприятия 3-й категории опасности, как правило, самые многочисленные, и они могут иметь тома ПДВ, разработанные по сокращенной программе. Контроль источников выбросов на таких предприятиях проводится выборочно, один раз в несколько лет.

К 4-й категории опасности относят самые мелкие предприятия с небольшим количеством выбросов вредных веществ в атмосферу. Для таких предприятий устанавливают нормативы ПДВ на уровне фактических выбросов. Эти предприятия могут отчитываться о выбросах не ежегодно, а один раз в три года при проведении очередной инвентаризации. Тома ПДВ для таких предприятий могут не составляться.

Определим категорию опасности предприятия при вычисленных в п.2 выбросах Mi. Из [1] находим среднесуточные ПДК и классы опасности выделяющихся вредностей. Результаты расчетов сводим в таблицу:

Таблица 3.2

Вещество Mi, т/год ПДКi, мг/м3 Класс опасности веществаαi      
Трифтортрихлорэт 146,468   18,3   0,9 13,68
Фтористый водород 0,235 0,02     1,7 695,93

55. Критерии опасности веществ в атмосфере и его расчет. Определение приоритетности примесей в атмосфере.

Критерий опасности веществ:

n - количество предприятий, выбрасывающих j-тую примесь.

Расчеты проводятся только при условии, что n/ПДК > 1. Иначе КОВ = 0.

КОВ >104 103-104 <103
Категория опасности I 10000 II 1000-10000 III 1000

Категория опасности предприятия является суммой категорий опасности ЗВ и в итоге сами предприятия делят на 4 категории опасности:

1.особо опасные при КОП>1 млн

2.опасные при 10 тыс.<КОП<1 млн

3.Малоопасные 1 тыс<КОП<10 тыс

Практически безопасные КОП<1 тыс

Предприятия 1 кат. относительно малочисленные, но имеют или малые значения валовых выбросов или значительную величину выброса ВВ 1 кл.оп. Такие предприятия в МИЗ должны находиться под наиболее пристальным вниманием (АЭС, крупные предприятия теплоэнергетики, работ на угле и мазуте, горно-хим. комбинаты, металлург. крупные предприятия, часть объектов хим. и нефтехим. промышленности, заводы УХО).

Предприятия более многочисленны 2 категории опасности, нуждающиеся в эпизодичном контроле.

3 кат. – самая распространенная (малоопасная)

4 кат. бурно растет последние 10 лет – предприятия малого бизнеса, кот. пока оцениваются как практически безопасные.

Санитарно-защитные зоны

Среди процессов, происходящих в атмосферном воздухе при по­ступлении в него примесей, выбрасываемых различными предпри­ятиями, следует выделить рассеяние этих примесей в атмосферном воздухе, в результате чего происходит снижение их концентрации, причем с увеличением расстояния от точки выброса эти концентра­ции снижаются до безопасных уровней. Поэтому с целью защиты селитебных территорий и других объектов и зон градостроения от воздействия загрязняющих веществ, поступающих в атмосферу вместе с выбросами, требуется отделять предприятия или их под­разделения свободными территориями — санитарно-защитными зо­нами (СЗЗ).

Санитарно-защитные зоны представляют собой территории оп­ределенной протяженности и ширины, располагающиеся между предприятиями и источниками загрязнения и границами зон жилой застройки.

Установлено, что каждое предприятие, имеющее ис­точники загрязнения среды, должно иметь санитарно-защитную зону. Для этой цели все предприятия разделены на 10 групп по от­раслям в зависимости от совокупности вызываемых ими вредностей. В пределах каждой группы выделяется пять классов предпри­ятий по степени их опасности и в зависимости от класса ус­танавливается нормативная ширина СЗЗ. Минимальные протя­женности СЗЗ для предприятий I класса составляют 1000 м, II клас­са — 500 м; III класса — 300 м; IV класса — 100 м; V класса — 50 м.

При установлении протяженности СЗЗ учитываются господству­ющие направления ветров, т.е. она может в зависимости от розы ветров иметь различную протяженность в разных направлениях, но в любом случае — не ниже минимальной (нормативной). Размеры СЗЗ могут быть уменьшены за счет технологических мероприятий, например систем очистки и обезвреживания загрязняющих веществ, снижения влияния иных вредных производственных факторов.

56.Сухие методы очистки газов от механических примесей

Способы очистки газа (воздуха) от капельной жидкости (влаги) и (или) взвешенных частиц (механических примесей, пыли), условно можно разделить на три основные группы – это механическая очистка газа, электрическая очистка газа и физико-химическая очистка газа. Для улавливания влаги и взвешенных частиц, как правило, используют механическую и электрическую очистку, а для выделения газообразных примесей используют физико-химический способ.

Механический способ очистки газа основан на осаждении влаги и (или) взвешенных частиц под действием силы тяжести (гравитации), инерционной и (или) центробежной силы; фильтрации газа через пористые и (или) волокнистые фильтры (материалы); промывкой газа жидкостью (водой).

Гравитационный способ очистки газа (воздуха), основан на гравитационном осаждении влаги и (или) взвешенных частиц. Принцип действия: газовый (воздушный) поток попадает в расширяющуюся осаждающую камеру (емкость) гравитационного пылеуловителя, в которой замедляется скорость потока и под действием гравитации происходит осаждение капельной влаги и (или) взвешенных частиц. Конструкция: Конструктивно осаждающие камеры гравитационных пылеуловителей могут быть прямоточного типа, лабиринтного и полочного. Эффективность: гравитационный способ очистки газа позволяет улавливать крупные взвеси.

Инерционный способ очистки газа (воздуха), основан на инерционном осаждении влаги и (или) взвешенных частиц. Принцип действия: газовый (воздушный) поток направляется в инерционный пылеуловитель, в котором, за счет изменении направления движения газа (воздуха) с влагой и взвешенными частицами происходит очистка газа. Плотность взвеси в несколько раз больше плотности газа (воздуха) и она продолжает двигаться по инерции в прежнем направлении и отделяется от газа (воздуха). Конструкция: Конструктивно инерционные пылеуловители представлены жалюзийными решетками, зигзагообразными отделителями. Эффективность: инерционный способ очистки газа позволяет улавливать крупные взвеси.

Центробежный способ очистки газа (воздуха), основан на инерционном осаждении влаги и (или) взвешенных частиц за счет создания в поле движения газового потока и взвеси центробежной силы. Центробежный способ очистки газа относится к инерционным способам очистки газа (воздуха). Принцип действия: газовый (воздушный) поток направляется в центробежный пылеуловитель в котором, за счет изменении направления движения газа (воздуха) с влагой и взвешенными частицами, как правило по спирали, происходит очистка газа. Плотность взвеси в несколько раз больше плотности газа (воздуха) и она продолжает двигаться по инерции в прежнем направлении и отделяется от газа (воздуха). За счет движения газа по спирали создается центробежная сила, которая во много раз превосходит силу тяжести. Конструкция: Конструктивно центробежные пылеуловители представлены циклонами. Эффективность: осаждается сравнительно мелкая пыль, с размером частиц 10 – 20 мкм.

Фильтрационный способ очистки газа (воздуха), основан на фильтрации газа (воздуха) с использованием бумажных, керамических, тканевых, полимерных и иных материалов. Принцип действия: газовый (воздушный) поток направляется в фильтр пылеуловитель, в котором влага и взвешенные частицы осаждаются на фильтрующем элементе. Конструкция: конструктивно фильтры пылеуловители представлены мешочными и рукавными фильтрами

57. Мокрые методы очистки газов от механических примесей

Промывочный способ очистки газа (воздуха), осуществляется промывкой жидкостью (водой) потока газа (воздуха). Принцип действия: жидкость (вода) вводимая в поток газа (воздуха) движется с высокой скоростью, дробиться на мелкие капли мелкодисперсную взвесь) обвалакивает частицы взвеси (происходит слияние жидкостной фракции и взвеси) в результате укрупненные взвеси гарантированно улавливаются промывочным пылеуловителем. Конструкция: конструктивно промывочные пылеуловители представлены скрубберами, мокрыми пылеуловителями, скоростными пылеуловителями, в которых жидкость движется с большой скоростью и пенными пылеуловителями, в которых газ в виде мелких пузырьков проходит через слой жидкости (воды).

Электрический способ очистки газа (воздуха), основан на воздействии сил неоднородного электрического поля на газовый (воздушный) поток. Принцип действия: при пропускании газа (воздуха) через электрический фильтр происходит ионизация потока, заряженные частицы увлекаются к осадительному электроду и осаждаются на нем. Конструкция: электрические пылеуловители представлены электрическими фильтрами.

Физико-химический способ очистки газа (воздуха), предназначен для удаления газообразных примесей из газового (воздушного) потока и основан на: - промывке газов (воздуха) растворителями (абсорбция); - промывке газов растворами реагентов, связывающих примеси химически (химическая абсорбция); - поглощении примеси твердыми активными веществами (адсорбция); - физическом разделении (низкотемпературная сепарация (НТС), низкотемпературная конденсация (НТК). Принцип действия: Абсорбция (химическая абсорбция) газообразных примесей растворителями производится путем промывки газа (воздуха) в орошаемых аппаратах типа скрубберов либо в барботерах. В барбатерах газ проходит сквозь жидкий растворитель, хорошо растворяющий газообразные примеси и плохо – остальные компоненты газа. В том случае, если необходимо использовать уловленные продукты, их извлекают из насыщенного ими растворителя путем десорбции. При химической абсорбции газовые примеси химически связываются растворами реактивов. Затем растворы регенерируют, в результате выделяют связанные примеси, а свойства растворов восстанавливают. Адсорбция газообразных примесей производиться с помощью различных пористых активных веществ: - активного угля, силикагеля, бокситов, циолитов. Вредные примеси адсорбируются на поверхности поглотителя, а после его насыщения отгоняются продувкой горячим воздухом, газом или перегретым паром.

58.Методы очистки газовых выбросов от газов и паров

Токсичные примеси, содержащиеся в отходящих газах, могут быть удалены различными способами. Наиболее распространены абсорбционный, адсорбционный, электрический способы, а также конденсация и сжигание:

  • Абсорбционный метод очистки основан на поглощении жидкими реагентами токсичных газов и паров из их смесей с воздухом. Одной из установок такого рода является скруббер. Загрязненный воздух поступает в нижнюю часть установки, проходит через смоченную поглотительным раствором насадку и выбрасывается в атмосферу. Поглотительный раствор из специальной емкости насосом подается в верхнюю часть скруббера и стекает вниз, орошая насадку. В зависимости от вида поглощаемого вещества и поглотительного раствора эффективность данного метода колеблется в широких пределах и может достигать значительной величины.
  • Адсорбционный метод основан на поглощении вредных газов и паров с помощью твердых сорбентов (силикагелей, активированных углей, цеолитов и др.). Наиболее часто указанный метод применяется для улавливания и возвращения в производство паров органических растворителей для их последующей рекуперации.
  • Конденсационный метод очистки газовых выбросов основан на выделении паров из воздуха в специальных аппаратах (конденсаторах). Метод требует значительного расхода энергии и используется в настоящее время крайне редко.
  • Метод сжигания органических примесей применяется в тех случаях, когда возвращение примесей в производство невозможно или нецелесообразно. В последнее время получило развитие каталитическое сжигание вредных выбросов. Если термическое сжигание применяется главным образом при высокой концентрации примесей и значительном содержании в газах кислорода при температуре 800…1100 °С, то при каталитическом методе окисления температура не превышает 250…300 °С. Каталитическая очистка в 2-3 раза дешевле высокотемпературного сжигания при достаточно высокой эффективности процесса.

59.Механическая очистка сточных вод

Механическая очистка сточных вод является предварительным этапом, который обязательно предшествует полной очистке стоков. Задача механической очистки - извлечь из воды осевшие или взвешенные нерастворимые твердые частицы, волокна и грубодисперсные примеси. Они способны: повредить фильтры, не рассчитанные на такой тип загрязнения, негативно повлиять на другое бытовое оборудование.

Механическая очистка стоков очень важна при повторном использовании технической воды на производстве. Кроме защиты оборудования от попадания твердых частиц при использовании оборотной воды, механическая очистка способна извлечь из промышленных стоков ценные химические соединения для повторного использования в производственном цикле.

Повторное использование технической воды не только способно возвратить в производственный цикл некоторое количество ценного сырья, но и максимально защищает экологию от сбросов ядовитых стоков, а также сохраняет запасы чистой природной воды.

В России процент использования оборотной воды очень высок и в среднем составляет около 65%. На предприятиях химической, газовой, нефтеперерабатывающей промышленности и в черной металлургии процент повторного использования очищенной технической воды доходит до 95%.

Частицы загрязнения могут иметь разные размеры, плотность и массу. Соответственно, для повышения эффективности при различных видах загрязнения механические методы очистки сточных вод используют различные физические принципы и инженерные решения. От того, насколько эффективной будет схема механической очистки сточных вод, часто зависит общее техническое решение по очистке стоков.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: