Закономерности распространения в атмосферном воздухе загрязняющих веществ

В управлении качеством воздушного бассейна большое значение имеет знание закономерностей распространения вредных веществ в атмосферном воздухе.

Данные об условиях переноса и распределения примесей в атмосферном воздухе необходимы для: 1) государственного планирования мероприятий в области охраны атмосферного воздуха; 2) проектирования и строительства населенных пунктов; 3) развития зон рекреации; 4) рационального размещения жилых районов и промышленных предприятий, расположения территорий разного назначения по отношению друг к другу; 5) разработки наиболее информативных и адекватных критериев оценки загрязнения атмосферного воздуха; 6) установления вкладов, вносимых источниками, расположенными в определенном районе, в общее загрязнение атмосферного воздуха; 7) разработки карт расчетных концентраций для различных атмосферных загрязнений; 8) прогнозирования качества атмосферного воздуха; 9) построения модельных систем мониторинга состояния атмосферного воздуха; 10) предупреждения неблагоприятного воздействия вредных веществ на здоровье населения.

Для гигиенической оценки тенденций в изменении состояния атмосферного воздуха необходимо помимо состава вредных веществ, обусловливающих специфику их действия

на организм человека, знать их концентрацию, определяющую интенсивность влияния того или иного ингредиента. Концентрация атмосферных загрязнений зависит от ряда факторов, а именно: величины выброса, высоты выброса, расстояния от источника выброса, метеорологических условий (направление, скорость ветра, влажность, атмосферное давление, температурная инверсия, солнечная радиация).

Объем вредных веществ, поступающих в атмосферный воздух, неодинаков

Различают высокие (Н > 50 м), средние (Н = 10—50 м), низкие (Н = 2—10 м) и наземные (Н < 2 м) источники выбросов.

На основании фундаментальных исследований, выполненных гигиенистами школы В.О. Рязанова, было установлено: чем выше источник выброса, тем больше сечение дымового факела в точке касания его поверхности земли и во всех точках, больше скорость ветра, интенсивнее процессы турбулентности, а также меньше концентрация примесей. Изменение сечения дымового факела определяется величиной раскрытия его угла. По данным Г.В. Шелейховского (1949), угол раскрытия факела колеблется в пределах

10—60°.

Конусообразный факел наблюдается при безразличной устойчивости атмосферы, когда превалирует механическая турбулентность, а небо затянуто облаками днем и ночью. Половина угла факела составляет почти 10°. Большая часть загрязнений переносится ветром на значительные расстояния, прежде чем достигнет уровня земли.

Волнообразный факел наблюдается в условиях сильной конвективной турбулентности и является следствием сверхадиабатического вертикального градиента температуры, который приводит к значительной неустойчивости атмосферы.

Характерен для ясных дней, когда земная поверхность нагревается солнечными лучами. Тепловые вихри могут быть достаточно сильными, чтобы переносить выбросы вниз до уровня земли за короткое время. Хотя здесь наблюдается тенденция к рассеиванию примесей в большом объеме, в отдельных участках приземного слоя концентрация их может быть значительной.

Нитевидный факел наблюдается при условии большого отрицательного градиента температуры, образования инверсии над трубой. Механическая турбулентность выражена слабо. Если плотность ГВС незначительно отличается от плотности воздуха, примеси перемещаются в направлении ветра приблизительно на одинаковой высоте. Чаще бывает в ясные ночи, когда земля охлаждается, излучая тепло. Земной поверхности достигает лишь небольшое количество летучих веществ.

Задымляющий факел наблюдается в том случае, если устойчивый слой воздуха находится на небольшом расстоянии, над точкой выброса, а неустойчивый — ниже выброса. Температурный профиль, способствующий образованию задымления, формируется рано утром. Утреннее солнце нагревает землю, развивается отрицательный температурный градиент в направлении от поверхности земли. Когда неустойчивый слой достигает высоты трубы, большие объемы выброса из нее переносятся в направлении ветра к поверхности земли. Это длится не более получаса. Но в течение этого времени приземная концентрация может достигать относительно высоких значений. Задымлению способствуют ясное небо и слабый ветер. Чаще всего такие условия создаются

летом.

Приподнятый факел появляется в то время, когда слой инверсии находится ниже выброса. Формируется в полдень и на рассвете при ясном небе. В течение суток под действием солнечных лучей отрицательный температурный градиент развивается во всем нижнем слое атмосферы. Тепло, излучаемое поверхностью земли после полудня, способствует образованию приземной инверсии. Когда слой инверсии углубляется, приподнятая струя ГВС переходит в нитевидный факел. При таких условиях загрязнения рассеиваются во время перемещения примесей в направлении ветра, и значительной приземной концентрации не наблюдается.

Рассеивание вредных веществ в атмосфере является следствием трех основных механизмов: 1) усредненного движения масс воздуха, переносящего загрязнения в направлении ветра; 2) турбулентных флюктуации, рассеивающих примеси во всех направлениях; 3) массовой диффузии, связанной с градиентом концентрации. Вместе с тем такие общие аэродинамические характеристики, как размер, форма и масса твердых аэрозольных частиц, влияют на процесс их переноса и седиментации.

Большое значение в формировании загрязнения воздушного бассейна в городе имеет направление ветра. При относительно равномерном размещении промышленных объектов на территории населенного пункта зона повышенного содержания ингредиентов смещается в подветренную сторону. Строительство промышленных объектов даже за чертой города по отношению к жилым кварталам без учета розы ветров может привести к тому, что выбросы будут переноситься в сторону города. Особенно большую роль играет направление ветра в городах, которые имеют вытянутую форму. Если вытянутость города

совпадает с преобладающим направлением ветра, то имеет место наложение факелов выбросов от различных источников с образованием зоны повышенного загрязнения в подветренной части города. Поэтому при осуществлении предупредительного государственного санитарного надзора промышленные объекты необходимо размещать в направлении, исключающем возможность создания неблагоприятной экологической ситуации. Установлено, что для одиночных источников выбросов максимум концентрации атмосферных загрязнений наблюдается при направлении ветра, вдоль этих источников, а если имеется группа параллельно расположенных источников, та неблагоприятным оказывается ветер, направленный перпендикулярно к ним. Наряду с этим необходимо учитывать, что под влиянием сезонных и суточных изменений направления ветра в районах с бризовой или муссонной циркуляцией перемещаются наибольшие концентрации примесей.

Если бы уровень загрязнения атмосферного воздуха зависел только от величины выброса и направления ветра, то он не изменялся бы при постоянном выбросе и одном и том же направлении ветра. Однако в реальных условиях атмосферный цикл начинается с выброса примесей в воздух, после чего он переносятся ветром и разбавляются воздухом. В этом процессе играет роль скорость ветра. Установлено, что наибольшая концентрация примесей в приземном слое атмосферного воздуха образуется при определенной скорости ветра, которую называют опасной. Значение ее зависит от типа источника выбросов и определяется по формуле

Следующим фактором, который играет определенную роль в рассеивании примесей в атмосферном воздухе, является температурная стратификация, или распределение температуры по высоте. Атмосфера — это термодинамическая система, в которой вертикальное перемещение воздушных масс при определенных условиях может рассматриваться как адиабатический процесс. При этом каждая масса, поднимающаяся вверх, будет охлаждаться, а опускаясь, — нагреваться.

Во время подъема массы воздуха атмосферное давление уменьшается, объем массы воздуха увеличивается, а температура снижается. Во время опускания массы воздуха ее объем уменьшается, а температура повышается.

Изменение температуры воздуха на каждые 100 м подъема, выраженной в градусах Цельсия, называется вертикальным температурным градиентом.

Величина вертикального температурного градиента колеблется. В летний период она приближается к 1 °С, а в холодный — снижается до десятых долей и минусовых величин.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: