Extract B

For small- signal tubes such as used in radio receivers, heaters are rated from 50 mW to 5 watts, (directly heated), and about 500 mW to 8 watts for indirectly heated types. Once filament/heater power is included in total power consumption, small tubes have very poor efficiencies. A 6BM8/ECL82 audio stage consumes a total power of some 15 watts for 3.5 watts of useful audio power, giving an efficiency of around 23%. Some signal amplifiers, particularly high-frequency amplifiers such as the 6BA6, consume some 5.9 watts of power in normal operation and deliver only 1.1 watts of power at the plate.

The second source of heat is generated at the anode, when electrons, accelerated by the voltage applied to the anode, strike the anode and impart a considerable fraction of their energy to it, raising its temperature. In tubes used in power amplifying or transmitting circuits, this source of heat will exceed the power dissipated in the cathode heater. (The plates or anodes of 6L6 devices used in guitar amplifiers can sometimes be seen to reach red heat if the bias is set too high, they should not emit any visible radiation when driven at maximum ratings.) No tubes in domestic, music, or studio equipment should operate with glowing anodes.

This heat usually escapes the device by (black body) radiation from the anode/plate as infra red light. Some is conducted away through the connecting wires going to the base but none is convected in most types of tube because of the vacuum and the absence of any gas inside the bulb to convect.

For devices required to radiate more than 500 mW or so, usually indirectly heated cathode types, the anode or plate is often treated to make its surface less shiny, (see black body radiator), and to make it darker, either gray or black. This helps it radiate the generated heat and maintain the anode or plate at a temperature significantly lower than the cathode, a requirement for proper operation.

Other internal elements of high-power tubes, such as control grids and screen grids, may also dissipate heat if carrying large currents. Limits to grid dissipation are listed for such devices to prevent distortion and failure of the grids.

In Russian write a content-based summary of the text you have translated.

Translate into English the summary made in ex.21 of the text you haven’t read.

Make a reverse written translation (from Russian into English) of the Extract you have translated.

Serve as simultaneous interpreter. Make an oral reverse interpretation of the text.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: