Какие ученые внесли вклад в развитие методов культуры клеток растений и животных

Самые ранние работы по изолированию культур принадлежат Блоцишевскому (1876), Брауну и Моррису (1892), Боннэ, Саксу (1893). В этих исследованиях зародыши вычленялись из семени и выращивались в искусственных условиях. Первым исследователем, занявшимся установлением минимального размера экспланта, был Карл Рехингер (1893). Он выращивал тонкие срезы корня свеклы и одуванчика и сегменты стебля тополя на песке с применением водопроводной воды, без стерильных условий. Эти исследования показали, что каллус образуется при толщине среза не менее 1,5 мм. Еще в 19 веке Х. Фёхтинг провел ряд экспериментов, доказывающих тотипотентность клетки. При этом им убедительно показана полярность как органов, так и клеток.

Основы экспериментальной эмбриологии растений были заложены исследованиями Моссарта (1902), который наблюдал набухание завязей некоторых растений после обработки их спорами Licopodium, нежизнеспособными поллиниями и водными экстрактами пыльцы. В связи с этим было высказано предположение, что пыльцевая трубка не только обеспечивает передвижение спермиев к яйцеклетке, но и переносит в завязь ауксины, стимулирующие ее рост.

Г. Габерланд (1902) научился культивировать отдельные клетки в течение некоторого времени. Но он выбрал для культивирования зеленые клетки, изолированные из клеток палисадной паренхимы Lamium purpureum и волосков традесканции вирджинской и медуницы мягкой, резонно рассудив, что при этом отпадет потребность в источниках углеводов. Однако упустил из виду то, что ассимилирующие зеленые клетки - зрелые и высокодифференцированные, потеряли способность к меристематической деятельности. Исходное предположение автора, что содержащие хлорофилл клетки полностью обеспечивают себя питательными веществами, необходимыми для их жизнедеятельности и роста, не было подтверждено экспериментально. Габерланд также выдвинул гипотезу о тотипотентности любой живой клетки расте­ния, которая впоследствии была подтверждена экспериментально.

Толчком к возобновлению работ послужили исследования Гаррисона, проведенные в 1904 - 1907 гг. Он вырастил нейробласты лягушки в лимфатической жидкости, доказав возможность выращивания in vitro изолированных клеток. Большое влияние на направление дальнейших работ с растительными клетками оказали работы зоологов Карреля и Барроуза (1911), культивировавших ткани и клетки млекопитающих на среде сложного состава, содержащей плазму крови и экстракты эмбриональных тканей.

Французский ученый Мольяр уже в 1921 культивировал сегменты корня и гипокотиля молодых побегов редьки. Они были способны к росту в условиях культуры, но при этом не происходило формирования новых тканей.

В 1922 г. один из учеников Рехингера - Коттэ начал эксперименты с лишенными пигментов меристематическими тканями - изолированными кончиками корней, и добился успеха. Практически одновременно и независимо от Коттэ Роббинс подобрал состав питательной среды, обеспечивающий в культуре рост апикальной меристемы корня томатов и кукурузы. Эти опыты по­ложили начало культивированию изолированных органов растений на питательных средах. Не всегда эти исследования были успешны. Под влиянием работ Карреля и Барроуза в 1927 году Прат начал культивировать клетки растений на средах с добавками растительных экстрактов. Результаты его экспериментов были отрицательны, так как он избрал неудачные объекты для исследований.

Начало длительным и удачным исследованиям по культивированию клеток и тканей растений положили работы американского исследователя Ф. Уайта и француза Р. Готре. Они показали, что изолированные органы и ткани могут расти в культуре неограниченно долгое время, если их пересаживать на свежую питательную среду. Такую же способность наблюдал Ф. Уайт для клеток опухолевого происхождения. Результаты чужих и собственных экспериментов Уайт обобщил в монографии «Культура растительных тканей», которая была переведена на русский язык и издана в СССР в 1949 году. В ней он выделяет несколько периодов в истории развития метода культуры клеток, тканей и органов растений:1834 -1900 гг. - создание и разработка клеточной теории.1900 – 1922 гг. - сформулирована идея культуры тканей.1922 – 34 гг. - безуспешные поиски методов, обеспечивающих длительное культивирование тканей.1934 - 39 гг. - детальная разработка техники культуры растительных тканей.Период 1940 - 1960 гг. значительно расширил список видов, выращиваемых in vitro. В монографию Готре, вышедшую в 1959 г., включено уже 142 вида. Были разработаны составы питательных сред, изучено значение микро- и макроэлементов для поддер­жания нормальной ростовой активности тканей, определено влияние витаминов и стимуляторов роста. Проводились работы по выявлению значения различных натуральных экстрактов (из эндосперма кокосового ореха, каштана, кукурузы и других рас­тений) для поддержания неорганизованного клеточного роста, а также для стимуляции органогенеза. Показано значение кинетина для пролиферации клеток in vitro и индукции стеблевого морфогенеза. Изучением этих вопросов занимались такие ученые, как Р. Хеллер, И. Нич, Ф. Скуг, Ф. Стевард, Р. Г. Бутенко. В это же время разработаны методы получения и выращивания клеточных сус­пензий, а также культивирования отдельной клетки, деление ко­торой индуцируется с помощью ткани-няньки.В 1960 - 1975 гг. положено начало методу получения изолированных протопластов из тканей корня и плодов томатов путем обработки их смесью пектолитических и целлюлолитических ферментов. Осново­положник этого метода - Э. Коккинг. Такебе с сотрудниками были определены условия культивирования изолированных протопластов, при которых они образуют клеточные стенки, делятся и дают начало клеточным линиям, способным к морфогенезу. Были разработаны методы гибридизации соматических клеток путем слияния протопластов и введения в них вирусных РНК, клеточных органелл, бактерий. В лабораториях Р. Г. Бутенко, Ю. Ю. Глебы проводились исследования по­ведения ядерного и цитоплазматического геномов партнеров в гибридных клеточных линиях и потомстве соматических гибридов растений - регенерантов. В этот же период были разработаны методы получения безвирусных растений из меристематических тканей. Начались эксперименты по созданию установок для глубинного культивирования клеток.Начиная с 1976 г., разработывались методы электрослияния протопластов и селекции гибридных клеток, культивирования гаплоидных клеток и получения новых форм и сортов сельско­хозяйственных растений. Удалось создать системы иммобили­зованных клеток для получения различных химических соеди­нений и их биотрансформации. Ведутся работы по переносу генов в растительные клетки и получению трансгенных растений.

Первые опыты по культуре животных тканей были проведены немецким биологом В. Ру, которому удалось в 1885 в течение нескольких дней поддерживать развитие нервной пластинки (зачатка центральной нервной системы) куриного эмбриона в теплом солевом растворе. Однако лишь предложенная американским биологом Р. Гаррисоном в 1907 воспроизводимая техника послужила основой для развития этого метода. Культивируя в сгустках лимфы небольшие кусочки нервной трубки эмбриона лягушки, он через несколько недель наблюдал образование нервных волокон. Французский хирург и патофизиолог А. Каррель, сумевший в течение 34 лет сохранять у штамма клеток сердца куриного эмбриона способность к активным делениям, доказал таким образом, что животные клетки могут неограниченно долго расти в культуре in vitro (то есть в пробирке, в искусственных условиях).

Особенности каллусных клеток В биотехнологии каллусом называют недифференцированные клетки, являющиеся тотипотентными и способными поэтому дать начало целому растению. Являются объектом генетической инженерии. Каллусных клетки in vitro сохраняют многие физиолого-биохимических особенностей присущих нормальным клеткам, которые входят в состав растительного организма. Каллусных клетки сохраняют способность к синтезувторичных метаболитов. Каллуса, полученные от морозостойких растений, присущие морозостойкость и способность к закалке. Такого свойства не имеют каллуса и ткани тропических и субтропических растений. Следовательно, устойчивость к низким температурам сохраняется при переходе клетки к каллусных роста.Общим в каллусных и нормальных клеток также устойчивость к воздействию высоких температур, осмотически активных веществ, засоление.Вместе с тем каллусных клетки могут приобретать некоторые свойства, которые отличают их от материнских. У них появляются специфические белки и уменьшается количество белков, которые присущи фотосинтезирующими клеткам листа, или они вовсе исчезают. Каллусных клетки отличаются значительной генетической гетерогенностью и физиологической асинхронность.В результате выхода из-под контроля организма каллусных клетки растут неорганизованно и асинхронно.Клеточный цикл каллусных клеток длиннее, чем у материнских клеток. Особенностью каллусных клеток является гетерогенность по возрасту. В каллусных ткани одновременно присутствуют клетки молодежи в Gi-фазе, старые в G2-и S-фазах цикла. Значительные различия наблюдаются в энергетическом обмене каллусных клеток. Они потребляют меньше кислорода по сравнению с нормальными. Дыхательный коэффициент каллусных клеток больше 1, свидетельствует о смещении соотношения между дыханием и брожением в сторону усиления брожения. Митохондрии в каллусных клетках развиты слабо, у них мало крист, что не может не влиять на активность аэробного дыхания.В каллусных клетках наблюдается сдвиг в сторону пентозофосфатного пути, который является источником пентоз, необходимых для клеток, которые делятся.

Тотипотентность растительной клетки В основе культивирования растительных клеток лежит свойство тотипотентности, благодаря которому соматические клетки растения способны полностью реализовать наследственную информацию, то есть обеспечить развитие всего растения. Свойство тотипотентности широко используется в биотехнологии. При культивировании изолированных клеток или кусочков ткани на питательных средах при соответствующей обработке фитогормонами из них можно вырастить целые растения с генотипом исходного растения, от которого были взяты клетки или кусочек тканей, т.е. можно получить клоны исходного растения. Это явление широко используется при создании безвирусных сортов растений. Для этого от зараженного вирусом растения берут кусочек меристематической ткани, в которой вирусов обычно нет, а затем выращивают из этой ткани целые растения – безвирусные клоны исходного растения. Другое применение культуры клеток и тканей – клеточная селекция. Например, при выведении устойчивых к засолению сортов культуры клеток от разных растений выращивают на засоленной питательной среде и смотрят, какие клетки выживут – эти клетки несут гены устойчивости к засолению. Затем из этих клеток выращивают целые растения, несущие гены устойчивости к засолению.Следует отметить, что в отличие от животной, растительная клетка предъявляет менее жесткие требования к условиям культивирования.  Способность отдельной соматической клетки полностью реализовывать свою программу развития и давать начало целому растительному организму называют тотипотентностью растительной клетки. Любая растительная клетка обладает одинаковыми потенциальными возможностями, так как содержит весь набор генов и, следовательно, клетки сохраняютсвойственную зиготе программу развития. Поэтому если мы получаем каллус из клеток лепестка цветка, или из клеток сердцевинной паренхемы стебля, или из клеток любой ткани, то в принципе каждая такая клетка может регенерировать целое растение. Однако свойство тотипотентности не всегда реализуется, так как потенциальные возможности клеток разных типов проявляются неодинаково. В некоторых из них гены в сильной степени репрессированы, в связи с чем проявление тотипотенности становится ограниченным. Идея о тотипотентности растительной клетки была выдвинута Г. Ха-берландтом еще в 1902 г., хотя и не получила тогда экспериментального подтверждения. Согласно определению Хаберландта, любая клетка растения может дать начало новому организму, и если этого не наблюдается, то только потому, что растительный организм подавляет потенции клетки к развитию. Изоляция клеток от растений способствует проявлению этих потенций. 

Фазы ростового цикла в периодической суспензионной культуре Суспензионные культуры - отдельные клетки или группы клеток, выращиваемые во взвешенном состоянии в жидкой среде. Представляют собой относительно гомогенную популяцию клеток, которую легко подвергнуть воздействию химических веществ.Суспензионные культуры широко используются в качестве модельных систем для изучения путей вторичного метаболизма, индукции ферментов и экспрессии генов, деградации чужеродных соединений, цитологических исследований и др. Рост суспензионных культур клеток можно оценивать по одному или нескольким следующим параметрам:

1. Объем осажденных клеток (ООК). Переносят небольшой объем суспензионной культуры в мерную пробирку объемом 15 мл, лучше всего коническую. Центрифугируют 5 минут при 200 g. ООК - величина, которую составляет объем осадка от объема суспензии, обычно в %.

2. Число клеток. Подсчитывается в камере Фукса-Розенталя.

3. Сырая и сухая масса. Суспензия клеток фильтруется через смоченный и взвешенный фильтр, вложенный в воронку Бюхнера под слабым вакуумом. Клетки промывают дистиллированной водой, оттягивают воду под вакуумом и взвешивают снова вместе с фильтром. Сухая масса – определяется аналогично, но взвешивается сухой фильтр, а клетки сушат вместе с фильтром в термостате при 60оС до постоянной массы.

4. Содержание белка. Для определения белка клетки собирают на фильтре из стекловолокна, дважды промывают кипящим раствором 70% этанола, сушат ацетоном, гидролизуют 1М NaOH при температуре 85оС полтора часа. Затем фильтруют и определяют белок по Лоури.

5. Проводимость среды. Определяют с помощью кондуктометра. Как правило, она обратно пропорциональна свежей массе клеток.

6. Жизнеспособность клеток. Оценивают, изучая движение цитоплазмы под микроскопом, а также с помощью прижизненных красителей (флюоресцеиндиацетат, соли тетразолия, синий Эванса). Перед использованием подбирают рН инкубационного буфера, концентрацию красителя, время инкубации, строят калибровочные кривые для смеси живых и убитых клеток.

По полученным данным строят ростовые кривые, которые имеют S-образную форму и состоят из нескольких участков: 1- латентная, или лаг-фаза, где видимый рост не наблюдается ни по одному из критериев; 2 - экспоненциальная, рост с ускорением; 3 - линейная, где скорость роста постоянна; 4 - фаза замедленного роста; 5 - стационарная фаза; 6 - фаза деградации клеток (рис. 11). Периодическое, или накопительное, культивирование — это самый простой способ выращивания клеток, являющийся пока традиционным. Суспензионные культуры используют для промышленного получения вторичных метаболитов. Вещества, продуцируемые растительными клетками используются в медицине, парфюмерной промышленности, растениеводстве и других отраслях промышленности. К ним относятся: алкалоиды, терпеноиды, гликозиды, полифенолы, полисахариды, эфирные масла, пигменты, антиканцерогены (птотецин, харрингтонин), пептиды (ингибиторы фитовирусов).


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: