Займемся теперь третьим вопросом. Почему тела участвуют в каком-то «узкогорлом» жизненном цикле?

Начну с объяснения того, что я понимаю под «узкогорлым». Из какого огромного числа клеток ни состояло бы тело слона, он начинает жизнь с единственной клетки - оплодотворенного яйца. Оплодотворенное яйцо - это то узкое горлышко, которое в процессе эмбрионального развития расширяется, превращаясь в триллионы клеток взрослого слона. Не имеет никакого значения ни общее число клеток, ни число специализированных клеточных типов, кооперирующихся для выполнения невообразимо сложной задачи обеспечения жизнедеятельности взрослого слона: усилия всех этих клеток направлены на достижение одной конечной цели - образование новых единичных клеток, яйцеклеток и сперматозоидов. Слон не только начинается с одной клетки - оплодотворенного яйца. Его конечная цель (или создаваемый им конечный продукт) сводится к образованию опять-таки единичных клеток - оплодотворенных яиц следующего поколения. Жизненный цикл большого и массивного слона и начинается, и кончается узким горлышком. Образование горлышка характерно для жизненных циклов всех многоклеточных животных и большинства растений. Почему? В чем его смысл? Чтобы ответить на этот вопрос, необходимо рассмотреть, какой была бы жизнь без такого узкого горлышка.

Представим себе два гипотетических вида водорослей, которые мы обозначим как вид А и вид В. Вид В представляет собой бесформенную массу перепутанных ветвей, плавающую в море. Время от времени какая-нибудь ветка обламывается и уплывает прочь. Ветка может обломиться в любом месте, и обломки могут быть любого размера. Как из черенков, используемых в садоводстве, из них вырастают такие же растения, как те, от которых они отломились. Такое отламывание отдельных участков - способ размножения данного вида. Как можно было заметить, оно на самом деле не отличается от способа его роста, с той разницей, что при размножении растущие части физически отделяются одна от другой.

Вид А выглядит примерно так же и тоже отличается беспорядочным ростом. Однако у него имеется одно коренное отличие. Он размножается с помощью одноклеточных спор, которые относятся течением от родительского растения, и где-то в море из них вырастают новые растения. Эти споры - такие же клетки данного растения, как любые другие. Так же, как и у вида В, размножение вида А не связано с половым процессом. Дочерние растения состоят из клеток, принадлежащих к тому же клону, что и клетки родительского растения. Единственное различие между этими двумя видами водорослей состоит в том, что вид В размножается, отрывая от себя участки собственного тела, состоящие из неопределенного числа клеток, а вид А размножается, отрывая от себя кусочки, состоящие всего из одной клетки.

Вообразив себе эти два вида растений, мы акцентировали внимание на коренном различии между узкогорлым и неузкогорлым жизненными циклами. Вид А воспроизводится, протискиваясь в каждом поколении через одноклеточное узкое горлышко. Вид В просто растет и распадается на два индивидуума. Вряд ли можно сказать, что у него имеются дискретные «поколения» или что он хотя бы состоит из дискретных «организмов». А как обстоит дело у вида А7 Я скоро объясню это, но уже можно до некоторой степени представить себе, каким будет ответ. Разве вид А уже не кажется нам более дискретным, более «организменным»?

У вида В, как мы видели, процесс размножения не отличается от процесса роста. В сущности он вообще вроде бы и не размножается. В отличие от этого у вида А рост и размножение четко разделены. Мы могли бы сосредоточиться на этом различии, но что дальше? Каков его смысл? Почему это важно? Я долго размышлял над этим и, мне кажется, я знаю ответ. (Между прочим, труднее было установить само существование вопроса, чем придумать ответ на него!) Ответ можно разделить на три части, причем первые две касаются взаимоотношений между эволюцией и эмбриональным развитием.

Подумаем прежде всего о проблеме эволюции сложного органа из более простого. На этой стадии наших рассуждений нам было бы лучше перейти от растений к животным, поскольку сложность их органов более очевидна. Кроме того, нет нужды привлекать к этим рассуждениям половой процесс; противопоставление полового и бесполого размножения в этих вопросах вводит в заблуждение. Мы можем представить себе наших животных как размножающихся с помощью бесполых спор - единичных клеток, которые, если не касаться мутаций, генетически идентичны друг другу и всем другим клеткам тела.

Эволюция сложных органов такого далеко продвинувшегося в своем развитии вида, как человек или мокрица, от более простых органов их предков происходила постепенно. Однако органы предков не превращались в буквальном смысле в органы потомков. Они не только не делали этого. Я хочу подчеркнуть, что в большинстве случаев они и не могли бы это сделать. Степень изменения, которая может быть достигнута путем прямого превращения, подобно перековке «мечей на орала», ограничена. Действительно, для радикальных изменений необходимо «вернуться к чертежной доске», отказаться от прежнего проекта и начать сызнова. Когда инженеры возвращаются к чертежной доске и создают новый проект, они не обязательно отказываются от идей, лежавших в основе старого проекта. Однако они и не стараются в буквальном смысле превратить прежний физический объект в новый. Прежний объект слишком обременен грузом истории. Возможно, вам удастся перековать мечи на орала, но попробуйте-ка «перековать» турбовинтовой двигатель в ракетный! Это вам не удастся! Вы должны выбросить Турбовинтовой двигатель и вернуться к чертежной доске.

Разумеется, никто никогда не проектировал живые существа на чертежных досках. Но в каждом поколении они возвращаются назад, чтобы начать все с самого начала. Каждый организм развивается из одной клетки и вырастает заново. Он наследует только идеи предковой конструкции в форме программы, зашифрованной в ДНК, но не наследует физических органов своих предков. Он не наследует сердце своих отца и матери, с тем чтобы переделать его в новое (и, возможно, усовершенствованное) сердце. Он начинает на голом месте, с одной клетки, и создает себе новое сердце, используя ту же самую программу, по которой развивалось родительское сердце, причем эту программу можно и улучшить. Нетрудно понять, к какому заключению я веду: важная особенность «узкогорлого» жизненного цикла состоит в том, что он делает возможным нечто, равноценное «возврату к чертежной доске».

Наличие в жизненном цикле стадии «узкого горлышка» имеет другое следствие, связанное с первым. Эта стадия служит своего рода точкой отчета или «календарем», который может быть использован для упорядочения во времени процессов, происходящих в эмбриональном развитии. В «узкогорлом» жизненном цикле каждое новое поколение проходит примерно через одну и ту же последовательность событий. Развитие организма начинается с одной клетки. Он растет путем клеточного деления, а размножается, отделяя от себя дочерние клетки. Предположительно он в конце концов умирает, однако это менее важно, чем представляется нам, смертным; в той мере, в какой это относится к нашей теме, цикл заканчивается размножением данного организма, знаменующим начало жизненного цикла нового поколения. Хотя теоретически организм мог бы размножаться в любое время в течение своей фазы роста, можно ожидать, что в конечном счете должно появиться некое оптимальное время для размножения. Организмы, продуцирующие споры в слишком молодом или слишком пожилом возрасте, оставят меньше потомков, чем их соперники, которые набирают силу и лишь после этого, достигнув полного расцвета, продуцируют большое количество спор.

Наши рассуждения подводят к идее о стереотипном, регулярно повторяющемся жизненном цикле. Каждое поколение не только начинается с одноклеточной стадии узкого горлышка. У него есть также стадия роста - «детство», продолжительность которого довольно точно задана. Определенная продолжительность, стереотипность стадии роста создает возможность для того, чтобы в процессе эмбрионального развития определенные события происходили в определенные периоды, как если бы они неуклонно подчинялись строгому календарю. Клеточные деления в период развития разных видов живых существ происходят в строгой последовательности, которая повторяется при каждом повторении жизненного цикла. Каждой клетке отведено свое место и время в реестре клеточных делений. Между прочим, в некоторых случаях точность этих параметров так велика, что эмбриологи могут дать название каждой клетке и указать, какой именно клетке в другом организме она соответствует.

Таким образом, стереотипность цикла роста служит часами или календарем, регулирующим запуск процессов эмбрионального развития. Подумайте о том, как охотно мы сами используем суточные циклы вращения Земли вокруг своей оси и ее годичные облеты Солнца для организации и упорядочения нашей жизни. Точно так же бесконечное повторение ростовых ритмов, налагаемых «узкогорлым» жизненным циклом, должно (это кажется почти неизбежным) использоваться для упорядочения и структурирования эмбриологических процессов. Определенные гены могут включаться и выключаться в определенные сроки, потому что благодаря расписанию, которому подчиняется цикл «узкое горлышко - рост», такая вещь, как определенные сроки, действительно существует. Такие хорошо темперированные регуляции генной активности - необходимое предварительное условие для эволюции эмбрионального развития, способного создавать сложные ткани и органы. Высокая точность и сложность строения орлиного глаза или крыла ласточки не были бы достигнуты, если бы их развитие не подчинялось строжайшим правилам о сроках становления каждой из входящих в них структур.

Наконец, «узкогорлый» жизненный цикл имеет и третье следствие - генетическое. Здесь мы снова воспользуемся примером водорослей видов А и В. Допустим, опять-таки для простоты, что оба вида размножаются бесполым путем, и попробуем представить себе, как могла происходить их эволюция. Эволюции необходимо генетическое изменение - мутационный процесс. Мутации могут возникать при любом клеточном делении. У вида В клеточные линии вместо узкого горлышка образуют широкий фронт. Каждая ветка, отламывающаяся от материнского растения и отплывающая от него, состоит из множества клеток. Поэтому вполне может оказаться, что две клетки дочернего растения окажутся менее близкой родней друг другу, чем каждая из них - клеткам материнского растения. (Под «родней» я имею в виду именно двоюродных братьев и сестер, внуков и т. п. У клеток имеются четкие родословные, которые ветвятся, а поэтому такие слова, как троюродные сибсы, можно применять к клеткам без всяких оговорок.) В этом отношении вид А резко отличается от вида В. У дочернего растения все клетки происходят от одной клетки-споры, так что все клетки данного растения связаны друг с другом более близким родством, чем с любой клеткой другого растения.

Это различие между двумя видами имеет важные генетические последствия. Подумайте о судьбе недавно мутировавшего гена, сначала у вида В, а потом у вида А.

У вида В новая мутация может возникнуть в любой клетке, в любой ветви растения. Поскольку дочерние растения продуцируются путем почкования по широкому фронту, прямые потомки мутантной клетки могут оказаться в дочерних и внучатых растениях вместе с немутировавшими клетками, связанными между собой относительно далеким родством. В отличие от этого у вида А самый недавний общий предок всех клеток данного растения не старше той споры, которая послужила «узкогорлым» началом данного растения. Если эта спора содержала мутантный ген, то все клетки нового растения будут содержать этот мутантный ген. Если в споре этого гена не было, то не будет его и у всех других клеток. У вида А клетки в пределах данного растения генетически более однородны, чем у вида В (если не учитывать возникающие время от времени обратные мутации). У вида А отдельное растение представляет собой определенную генетическую единицу, заслуживающую звания индивидуума. Растения вида В генетически менее определенны и меньше заслуживают этого звания.

Дело тут не только в терминологии. В обстановке возникающих время от времени мутаций генетические интересы клеток одного и того же растения вида В могут не совпадать. Гену, находящемуся в одной из клеток вида В, может оказаться выгодным способствовать воспроизведению этой своей клетки. Ему необязательно будет выгодно способствовать размножению своего «индивидуального» растения. Наличие мутационного процесса делает маловероятным, что все клетки данного растения будут генетически идентичны, а поэтому они не станут сотрудничать в полную силу друг с другом в создании органов и новых растений. Естественный отбор будет действовать на уровне клеток, а не «растений». В отличие от этого у вида А все клетки данного растения скорее всего будут содержать одни и те же гены, потому что они могут различаться только по совсем недавно возникшим мутациям. Поэтому клетки вида А будут благополучно сотрудничать, создавая эффективные машины выживания. Вероятность того, что клетки разных растений будут содержать различные гены, у вида А выше. Ведь, собственно,, клетки, прошедшие через разные узкие горлышки, могут различаться по всем мутациям, за исключением самых недавних, а это означает - по большинству. Поэтому здесь отбор будет оценивать в качестве соперников не клетки, как у вида В, а растения. Соответственно можно ожидать, что у вида А будет происходить эволюция органов и «изобретений», полезных растению в целом.

Между прочим (специально для тех, кто интересуется этим вопросом в силу своей профессии), в таких рассуждениях есть некая аналогия с дискуссиями по проблеме группового отбора. Индивидуальный организм можно представлять себе как «группу» клеток. Если бы нашелся какой-то способ, позволяющий повысить долю межгрупповой изменчивости до внутригрупповой, то это могло бы привести в действие некую форму группового отбора. Способ размножения вида А приводит именно к повышению этой доли, а способ размножения вида В производит прямо противоположный эффект. Между «узким горлышком» и двумя другими идеями, составляющими основное содержание этой главы, имеются также черты сходства, которые, возможно, существенны, но которые я рассматривать не буду. Это, во-первых, идея о том, что паразиты будут кооперироваться с хозяевами, с тем, чтобы их гены переходили в следующее поколение в тех же самых репродуктивных клетках, что и гены хозяина, протискиваясь через то же самое узкое горлышко. И, во-вторых, идея о том, что клетки тела, размножающегося половым путем, кооперируются друг с другом только вследствие скрупулезной беспристрастности мейоза.

Подводя итоги, можно сказать, что мы обнаружили три причины, по которым «узкогорлый» жизненный цикл способствует эволюции организма как дискретного и единичного носителя. Этим трем причинам можно дать соответственно следующие названия: «назад к чертежной доске», «упорядоченный во времени цикл» и «единообразие клеток». Что появилось раньше: жизненный цикл с «узкогорлой» фазой или же дискретный организм? Мне хотелось бы думать, что они эволюционировали вместе. Более того, как мне кажется, важнейшая определяющая черта индивидуального организма состоит в том, что он представляет собой единицу, начинающуюся и заканчивающуюся одноклеточным узким горлышком. Если жизненные циклы становятся «узкогорлыми», то живая материя неизбежно должна оказаться упакованной в дискретные одиночные организмы. И чем больше живая материя распределяется по дискретным машинам выживания, тем сильнее клетки этих машин выживания будут направлять все заботы на клетки того особого типа, которым суждено переправлять свои общие гены через узкое горлышко в следующее поколение. Эти два явления «узкогорлые» жизненные циклы и дискретные организмы - идут рука об руку. Эволюция каждого из них подкрепляет эволюцию другого. Оба они взаимно продвигают друг друга, подобно все усиливающемуся взаимному влечению женщины и мужчины по мере развития романа между ними.

«Расширенный фенотип» - достаточно объемистая книга и трудно втиснуть все ее содержание в одну главу. Я был вынужден применить здесь сжатый, импрессионистский стиль, основываясь в определенной степени на интуиции. Тем не менее я надеюсь, что мне удалось дать читателю почувствовать увлекательность самой проблемы.

Я хочу закончить кратким манифестом, подведением итогов всего взгляда на жизнь в свете концепции эгоистичный ген - расширенный фенотип. Я считаю, что этот подход применим к живым существам в любом месте Вселенной. Основная единица жизни, ее главный двигатель - это репликатор. Репликатором можно назвать любой объект во Вселенной, который самокопируется. Репликаторы появляются главным образом случайно, в результате беспорядочного столкновения мелких частиц. Однажды возникнув, репликатор способен генерировать бесконечно большое множество собственных копий. Однако процесс копирования никогда не бывает совершенным и в популяции репликаторов возникают варианты, отличающиеся друг от друга. Некоторые из этих вариантов утрачивают способность реплицироваться, и после того, как их представители прекращают свое существование, эти варианты вообще исчезают. Другие еще продолжают реплицироваться, но делают это менее эффективно. Между тем оказывается, что особенности некоторых вариантов дают им возможность реплицироваться даже более успешно, чем их предшественники и современники. Именно их потомки начинают занимать в популяции господствующее положение. С течением времени мир заполняется самыми эффективными и изобретательными репликаторами.

Постепенно открываются все более и более изощренные способы, обеспечивающие эффективную репликацию. Репликаторы выживают не только благодаря своим собственным качествам, но и благодаря влиянию, которое они оказывают на окружающий мир. Их влияния могут быть весьма косвенными. Достаточно, чтобы в конечном счете эти влияния, какими бы извилистыми и косвенными путями они ни осуществлялись, обладали обратной связью и способствовали успешному самокопированию репликатора.

Успех репликатора в нашем мире зависит от того, каков этот мир, т. е. от предсуществующих условий. К числу самых важных из этих условий относятся другие репликаторы и их влияния на мир. Подобно английским и немецким гребцам, репликаторы, обладающие благотворным влиянием друг на друга, оказавшись вместе, начинают господствовать. В какой-то момент эволюции жизни на нашей Земле эти совместимые друг с другом репликаторы, объединяющиеся в группы, начинают приобретать форму дискретных носителей-клеток, а позднее - многоклеточных тел. Носители, у которых в процессе эволюции выработался «узкогорлый» жизненный цикл, процветали и становились все более дискретными и все больше похожими на носителей.

Эта упаковка живого вещества в дискретные носители стала настолько характерной и доминирующей чертой, что к тому времени, когда на сцене появились биологи и начали задавать вопросы о жизни, их вопросы по большей части касались носителей - индивидуальных организмов. Биолог уделял главное внимание организму, тогда как репликаторы - известные теперь как гены - воспринимались как часть механизмов, используемых индивидуальными организмами. Необходимо приложить определенное усилие, чтобы вновь наставить биологию на верный путь и вспомнить, что репликаторам принадлежит первое место как по их значению, так и в историческом плане.

Один из способов напомнить нам об этом - поразмыслить о том, что даже сегодня не все фенотипические эффекты того или иного гена ограничены индивидуальным телом, в котором он находится. Безусловно, в принципе, а также фактически влияние гена выходит за стенки индивидуального тела и манипулирует объектами окружающего мира, среди которых есть как неживые объекты, так и другие живые существа, причем некоторые из последних могут находиться достаточно далеко. Не требуется большого воображения, чтобы представить себе ген, расположившийся в центре и излучающий во все стороны фенотипическую энергию. А тот или иной объект внешнего мира представляет собой центр, к которому сходятся нити влияний от многих генов, находящихся во многих организмах. Длинная рука гена не знает границ. Весь мир покрыт перекрещивающимися каузальными стрелками между генами и их фенотипическими эффектами, далекими и близкими.

То, что эти каузальные стрелки оказались связанными в один узел, - дополнительное обстоятельство, имеющее слишком важное значение, чтобы его можно было назвать случайным, но недостаточно необходимое теоретически, чтобы называть его неизбежным. Репликаторы уже не рассыпаны по всему первичному океану; они собраны в большие колонии - индивидуальные тела. А их фенотипические влияния, которые прежде были равномерно распределены по всему миру, во многих случаях замкнулись в тех же самых телах. Однако существование на нашей планете столь привычного для нас индивидуального тела было вовсе не обязательным. Единственный объект, существование которого необходимо для возникновения жизни в любом месте Вселенной,- это бессмертный репликатор.

Дополнения


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: