Модулятор

┌────────────────────────────────────────┐

ВХОД ──│ детектор + регулятор + эффектор │── ВЫХОД

└────────────────────────────────────────┘

ОБРАТНАЯ СВЯЗЬ │

─────────────────────────────────────────────

Модулятор – центральное звено кибернетической системы состоит из 3 частей.

Детектор - устройство контроля состояния системы (осморецепторы раздражаются ионами Na+).

Регулятор - устройство для анализа информации и выработки ответа на сигнал от детектора (гипоталамус раздражается и выделяет антидиуретический гормон – АДГ).

Эффектор – устройство обеспечения ответной реакции (почки под воздействием АДГ увеличивают обратную реабсорбцию воды).

Вход – это внешнее воздействие – раздражение, которое приводит к отклонению параметра системы (организма) от стационарного состояния (после употребления соленой пищи растет концентрация натрия в крови).

Выход – это результат реагирования модулятора системы на отклонении ее параметра от стационарного состояния (появление чувства жажды и утоление его водой).

Обратная связь – влияние выхода на вход (увеличение воды в организме снижает влияет на концентрацию соли в крови).

Обратная связь может быть отрицательной (не значит, что плохой) и положительной (не значит, что хорошей).

Отрицательная обратная связь препятствует отклонению системы от стационарного состояния, уменьшая ("-") отклонение по модулю. Ее результат: восстановлен исходный уровень параметра.

Так, для нормальной работы организма необходимо поддерживать концентрацию глюкозы в крови на уровне около 4 мМоль/л (3,6 - 5,5) - это исходный уровень – стационарное состояние. Повышение или снижение концентрации глюкозы называют отклонением от исходного уровня параметра гомеостаза. После этого, в живом организме включаются механизмы, которые могут вернуть концентрацию глюкозы к исходному значению.

Например, если человек съел сладкое или мучное, то уровень глюкозы в крови повышается. Включается парасимпатическая нервная система и вырабатывается гормон инсулин, который переводит глюкозу из крови в клетки (снижение концентрации глюкозы в крови).

Наоборот, когда при физической нагрузке (затрата энергии и уменьшение концентрации глюкозы в крови) включается симпатическая нервная система, в ответ вырабатывается адреналин и переводит глюкозу из депо (гликоген в печени) в кровь (концентрация глюкозы в крови повышается).

В обоих случаях система возвращается в исходное стационарное состояние.

В этих примерах произошло поддержание гомеостаза по принципу отрицательной обратной связи. Уменьшается отклонение от нормы по модулю. Т.о., если ответ организма уменьшает «-» отклонение от стационарного состояния, то обратная связь отрицательная.

Если ответ организма увеличивает «+» отклонение от стационарного состояния, то обратная связь положительная.

Например, при больном сердце уменьшается кровоток во всех органах, в том числе, через почки. Снижение почечного кровотока раздражает юкста-гломерулярные клетки почек, которые вырабатывают гормон ренин. Ренин запускает систему, которая задерживает в организме воду и суживает артерии. При этом нагрузка на сердце возрастает, и оно еще хуже выбрасывает кровь. Но, чем слабее работает сердце, тем меньше кровоток через почки и они выбрасывают еще больше ренина, а чем больше ренина, тем труднее сердцу. Формируется порочный круг болезни. В результате, при отсутствии лечения больной умирает от сердечнососудистой недостаточности.

Чаще всего в медицине рассматривают возникновение положительной обратной связи, как «плохое» явление, ведущее к катастрофическим для организма последствиям, а регуляцию с помощью отрицательной обратной связи как «хорошее» физиологическое явление.

Однако возникновение положительной обратной связи не всегда приводит к плохим последствиям. Считается, что потенциал действия в нервных и мышечных клетках является нормальным процессом, который запускается по механизму положительной обратной связи. Небольшая частичная деполяризация мембраны может включить механизм перезарядки мембраны – основу нормальных электрофизиологических процессов организма.

Отрицательная обратная связь тоже не всегда «хорошая». Так, у здорового человека в головном мозге постоянно вырабатываются эндорфины – вещества, обеспечивающие определенный порог болевой чувствительности. Поэтому мы не чувствуем боли при движении суставов, органов пищеварения при перистальтике. При серьёзных повреждениях организма собственных эндорфинов не хватает и для снятия боли вводят наркотические анальгетики (морфин, омнопон, промедол). Но, они не только снимают боль. По механизму отрицательной обратной связи происходит снижение выработки собственных анальгетиков – эндорфинов. Длительный прием наркотиков делает мозг «ленивым» и он «забывает», как делать эндорфины. Внезапная отмена наркотика, ставит больного в беззащитное состояние - он уже не может терпеть обычные нервные сигналы от рецепторов организма. Простые раздражения вызывают боль – наступает «ломка» - абстинентный синдром. Организм попадает в лекарственную зависимость от наркотика.

Фармакологические принципы регуляции больных организмов основаны на знании кибернетических механизмов их физиологической регуляции. Эти принципы включают применение средств действующих на рецепторы (адреномиметики, холиномиметики, адреноблокаторы, холинолитики), транспорт ионов через мембраны (блокаторы кальциевых каналов), концентрацию гормонов (глюкокортикоиды) и т. п.

Важным примером нарушения гомеостаза является изменение рН - водородного показателя – главного показателя кислотно-щелочного равновесия в клетках организма. Нормальное функционирование клеток и всего организма возможно только при строго определенных значениях рН. Так в клетках границы нормы для водородного показателя укладываются в промежуток от 7,2 до 7,4. Сдвиг рН в кислую сторону (рН<7,2) называют ацидоз, а в щелочную (рН>7,4) называют алкалоз. В обоих случаях происходит изменение концентрации ионов водорода и нарушение работоспособных структур белковых молекул. Органические молекулы перестают выполнять свои функции, что приводит к тяжелым нарушениям здоровья и гибели организмов.

Поддержание гомеостаза рН обеспечивают буферные системы организма (гемоглобиновая, гидрокарбонатная, фосфатная, белково-аминокислотная) и некоторые органы (почки, легкие). Эти системы и органы препятствуют изменению рН, связывая ионы водорода (Н+) или гидроксил-ионы (ОН-). Так, например, при активной физической работе в клетках сердца возникает недостаток кислорода и накапливается молочная кислота. Она диссоциирует с образованием ионов водорода. Возникает угроза ацидоза и инфаркта миокарда. Но молочная кислота действует и на артерии сердца - они расширяются. Это приводит к улучшении доставки кислорода, а в его присутствии молочная кислота окисляется до углекислого газа и воды. Концентрация ионов водорода возвращается к норме. Углекислый газ и вода удаляются легкими и почками. В этом случае гомеостаз не нарушается.

Нарушение правильной последовательности отдельных нуклеотидов в молекуле ДНК или РНК называют точковыми мутациями. Они возникают при действии мутагенных факторов: физических (ионизирующая радиация), химических (лекарства), биологических (вирусы).

Возможны 4 типа точковых мутаций.

1. Замещение. Место одного нуклеотида заменяет другой.

…ААА ТТТ ЦАЦ ЦГА ГГГ... - норма

…ААТ ТТТ ЦАЦ ЦГА ГГГ... - мутация

Последствия замещения (для собираемой белковой молекулы):

а - возникновение стоп-кодона и прекращение сборки белка

(УГЦ-Цис УГА-стоп)

б - замена одной аминокислоты (ААЦ-Асн ААА-Лиз)

в - сборка нормального белка, если замещение попало на вырожденный код (ААА-Лиз ААГ-Лиз)

2. Инверсия (вращение). Соседние нуклеотиды меняются местами

…ААА ТТТ ЦАЦ ЦГА ГГГ... - норма

…ААТ АТТ ЦАЦ ЦГА ГГГ... - мутация

Последствия инверсии (для собираемой белковой молекулы):

а - возникновение стоп-кодона и прекращение сборки белка

(УАЦ ААА-Тир Лиз УАА ЦАА-стоп Глн)

б - замена двух аминокислот (ААА ЦЦЦ-Лиз Про ААЦ АЦЦ-Асн Тре)

в - замена одной аминокислоты, если инверсия между соседними триплетами у одного из них попала на вырожденный код

(ААА ГГГ-Лиз Гли ААГ АГГ-Лиз Арг)

г - сборка нормального белка, если инверсия между соседними триплетами обоих нуклеотидов попала на вырожденный код

(ЦЦЦ АГГ-Про Арг ЦЦА ЦГГ-Про Арг)

3. Вставка. В последовательность нуклеотидов вставляется новый лишний нуклеотид

…ААА ТТТ ЦАЦ ЦГА ГГГ... - норма

…ААА ЦТТ ТЦА ЦЦГ АГГ Г... - мутация

Последствия вставки (для собираемой белковой молекулы):

а - возникновение стоп-кодона и прекращение сборки белка (УАЦ ААА-Тир Лиз УАА ЦАА А стоп-Глн)

б - сдвиг рамки триплетного кода и сборка бессмысленного белка

...ААА УУУ ЦАЦ ЦГА ГГГ...- Лиз Фен Гис Арг Гли…

...ААА ЦУУ УЦА ЦЦГ АГГ Г...- Лиз Лей Сер Про Арг…

4. Выпадение (делеция). Из последовательности нуклеотидов теряется нормальный нуклеотид

...АААТТТЦАЦЦГАГГГА... - норма

...ААТТТЦАЦЦГАГГГА... - мутация

Последствия вставки (для собираемой белковой молекулы):

а - возникновение стоп-кодона и прекращение сборки белка (УАЦ ААА-Тир Лиз УАА АА- стоп-)

б - сдвиг рамки триплетного кода и сборка бессмысленного

...ААА УУУ ЦАЦ ЦГА ГГГ...- Лиз Фен Гис Арг Гли…

...ААА УУЦ АЦЦ ГАГ ГГ...- Лиз Фен Тре Глу…

Редким видом последствий (для собираемой белковой молекулы) любого вида точковой мутации может быть исчезновение стоп-кодона.

Для реального организма любая мутация, ведущая к нарушению последовательности нуклеотидов, может иметь 3 физиологических последствия:

1 - смерть;

2 - болезнь, но возможно она проявится через несколько поколений;

3 - нет заметных изменений здоровья, если изменилась часть белка, не имеющая важного функционального значения.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: