Лимоннокислое брожение


При лимоннокислом брожении сахар под воздействием грибов окисляется в лимонную кислоту. Эту кислоту раньше получали из сока цитрусовых – лимонов и апельсинов. В настоящее время ее производят в основном путем брожения. В качестве возбудителя лимоннокислого брожения применяется гриб асспергиллус нигер.
Сырьем для производства лимонной кислоты служит сахаросодержащий продукт - меласса. Мелассный раствор, включаю­щий около 15% сахара и необходимые грибу питательные веще­ства, разливают в плоские открытые сосуды и засевают спорами гриба. Сосуды помещают в бродильные камеры, которые хоро­шо проветривают. Процесс брожения продолжается в течение 6-8 дней при температуре около 30°С.
По окончании брожения мелассный раствор из-под пленки гриба сливают, затем из него выделяют лимонную кислоту, ко­торую подвергают последующей очистке и кристаллизации. Вы­ход лимонной кислоты составляет 50-60% от количества израсходованного сахара.

В последнее время начинают применять новый метод полу­чения лимонной кислоты. При этом гриб находится не на поверхности сбраживаемого субстрата, а внедряется своим мицелием в толщу субстрата, который энергично насыщают воз­духом. Такой способ ускоряет процесс накопления лимонной кислоты в сбраживаемом субстрате.

Лимонная кислота находит широкое практическое примене­ние, она используется, например, при изготовлении кондитер­ских и кулинарных изделий, безалкогольных напитков и т. д.

Сбраживание белков


Некоторые бактерии из рода Clostridium - гнилостные анаэробы - способны сбраживать не только углеводы, но и аминокислоты. Эти бактерии более приспособлены к использованию белков, расщепляемых ими при помощи протеолитических ферментов до аминокислот, которые затем подвергаются брожению. Процесс сбраживания белков имеет значение в круговороте веществ в природе.

Разрушение жиров

Различные физико-химические факторы, а также микроорга­низмы, могут вызывать разложение и порчу жиров.

Начальной стадией разрушения жиров является их гидролиз (омыление) на глицерин и жирные кислоты. Этот процесс легко происходит при высокой температуре под действием щелочей или кислот. Под влиянием ферментов (липаз) гирдолиз проте­кает при обычной температуре. Омыление жиров при воздей­ствии ферментов происходит, например, во время переваривания жиров в пищеварительном тракте животных. Ферменты, разру­шающие жиры, вырабатываются многими микроорганизмами.

Образовавшиеся в результате гидролитического расщепле­ния глицерин и жирные кислоты затем подвергаются дальней­шему разрушению. Наиболее легко разрушается глицерин, слу­жащий для многих микроорганизмов источником углерода. Разрушение глицерина может происходить в аэробных и анаэробных условиях.

Жирные кислоты менее подвержены разрушению, однако и они постепенно окисляются, преимущественно в аэробных усло­виях. Конечной стадией разрушения глицерина и жирных кислот является их минерализация, сопровождающаяся образованием углекислого газа и воды.

Наиболее активно разлагают жиры некоторые пигментные и флуоресцирующие бактерии, микрококки и актиномицеты, а также плесневые грибы, особенно оидиум лактис и многие виды из родов аспергиллус и пенициллиум.
Разложение жиров микроорганизмами в почве и воде про­исходит постоянно, оно является составной частью общего кру­говорота веществ в природе.
Порча пищевых жиров микробами нередко наносит большой ущерб. Развитию в жирах микроорганизмов способствует нали­чие в них воды и органических примесей. Поэтому чем меньше влаги содержится в жире и чем полнее он очищен от примесей, тем лучше сохраняется.

Гнилостные процессы

Гниением называется разложение белковых веществ микро­организмами. Белки являются важнейшей составной частью жи­вого и отмершего органического мира, содержатся во многих пищевых продуктах. Белки характеризуются большим разнооб­разием и сложностью строения.

Способность разрушать белковые вещества присуща многим микроорганизмам. Одни микроорганизмы вызывают неглубокое расщепление белка, другие могут разрушать его более глубоко. Гнилостные процессы постоянно протекают в природных усло­виях и нередко возникают в продуктах и изделиях, содержащих белковые вещества. Разложение белка начинается с его гидролиза под влиянием протеолитических ферментов, выделяемых микробами в окружающую среду. Гидролиз белков протекает в несколько стадий. Первичными продуктами гидролиза яв­ляются пептоны и полипептиды, мало отличающиеся от исход­ного белка, но обладающие меньшим молекулярным весом. Пептоны и полипептиды затем расщепляются более глубоко, до образования аминокислот, которые являются конечными про­дуктами гидролиза.

Процесс гидролиза белка можно представить в виде следующей схемы: белок пептоны полипептиды аминокислоты.

Аминокислоты подвергаются дальнейшему рас­щеплению, в результате чего образуются различные продукты гниения, многие из которых характеризуются неприятным запа­хом (аммиак, сероводород, индол, скатол, меркаптаны и др.).
Органические соединения, получающиеся при распаде ами­нокислот, в аэробных условиях подвергаются последующему окислению вплоть до полной минерализации. В качестве конеч­ных продуктов гниения при этом образуются аммиак, углекис­лый газ, вода, сероводород и соли фосфорной кислоты, то есть минеральные вещества.

В анаэробных условиях не происходит полного окисления органических соединений, являющихся продуктами распада аминокислот.

Поэтому кроме аммиака и углекислоты среди конечных ве­ществ гниения накапливаются различные органические кислоты, спирты, амины и другие органические соединения, сообщающие гниющему материалу отвратительный тошнотворный запах. Гнилостные микроорганизмы широко распространены в при­роде.
Среди гнилостных микроорганизмов наибольшее значение имеют бактерии. Гнилостные бактерии бывают спорообразующие и бесспоровые, аэробные и анаэробные.
Чаще других гниение вызывают следующие аэробные бактерии: бациллуссубтилис (сенная палочка) и бациллусмезентерикус (картофельная палочка). Обе эти бактерии по­движны и образуют споры, отличающиеся устойчивостью к вы­соким температурам.

Сенная палочка постоянно обитает на сене, благодаря чему и получила своё название. Развивается на сенном настое в виде пленки. Сенная палочка способна вырабатывать антибиотиче­ские вещества, подавляющие жизнедеятельность многих болез­нетворных и неболезнетворных бактерий. Температурный оптимум ее развития составляет 37-50°С. При разложении ею белков выделяется много аммиака.
Картофельная палочка обладает большей активностью в разрушении белков, чем сенная. Оптимальная температура ее роста 36-45°С.

Картофельная палочка (сенная палочка в меньшей мере) способна вызывать упоминавшуюся ранее картофельную бо­лезнь печеного хлеба, вследствие чего он становится тягучим и липким. Такой хлеб в пищу непригоден. Обе бактерии могут вызывать порчу многих других продуктов - молочных и конди­терских изделий, картофеля, плодов и др.

К числу гнилостных бактерий, разрушающих белковые ве­щества в аэробных условиях, относится также бациллус. микоидес. Эта бактерия широко распространена в почве. Она представляет собой подвижную спорообразующую палочку.
Наиболее распространенными и активными возбудителями гниения в анаэробных условиях являются бациллуспутрификус и бациллусспорогенес.

Путрификус является подвижной, спорообразующей палоч­кой, энергично разлагает белки с выделением большого количе­ства газа.
Спорогенес - подвижная, спорообразующая палочка, при разложении белков образует много сероводорода. Споры ее термоустойчивы. Оптимальная температура развития 37°С.

Среди факультативных анаэробов разложение белка вызывает протеусвульгарис (протей). Бактерии представ­ляют собой мелкие, бесспоровые, очень подвижные палочки. Эта бактерия обладает способностью менять форму и размеры на разных питательных субстратах, вследствие чего она и полу­чила имя мифического бога Протея, необыкновенные превраще­ния которого описаны в знаменитой «Одиссее» Гомера. При разложении белка протей образует сероводород и индол, а на средах, богатых углеводами, выделяет большое количество угле­кислоты и водорода. Хорошо развивается при температуре в пределах 25-37°С.
В гнилостных процессах нередко участвует бактериум коли (кишечная палочка). Эта бактерия представляет собою корот­кую подвижную, бесспоровую палочку, относящуюся к факуль­тативным анаэробам. Она постоянно обитает в кишечнике че­ловека и животных и попадает в почву вместе с навозом. Протей и кишечная палочка, попав на пищевые продукты, способны при определенных условиях накапливать ядовитые вещества, вызывающие отравления при употреблении этих про­дуктов.
К числу гнилостных микроорганизмов относятся многие пигментные неспоровые бактерии, флуоресцирующие бактерии, актиномицеты, различные плесневые грибы.
Таким образом, гнилостные процессы вызываются разнооб­разными микроорганизмами, состав которых зависит от харак­тера разлагаемого белкового вещества и окружающих условий.

Оптимальная температура развития для большей части гни­лостных микроорганизмов находится в пределах 25-35°С. Низ­кие температуры не вызывают их гибели, а лишь приостанавли­вают развитие. При температуре 4-6°С жизнедеятельность гни­лостных микроорганизмов подавляется. Бесспоровые гнилостные бактерии погибают при температуре выше 60°С, а спорообразующие бактерии выдерживают нагревание до 100°С.

В природе гниение играет большую положительную роль. Оно является составной частью круговорота веществ. Гнилост­ные процессы обеспечивают обогащение почвы такими формами азота, которые необходимы растениям.
Однако гнилостные микроорганизмы могут вызывать порчу многих пищевых продуктов и материалов, содержащих белковые вещества. Для предотвращения порчи продуктов гнилостными микроорганизмами следует обеспечивать такой режим их хра­нения, который исключал бы развитие этих микроорганизмов.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: