Правильные ответы

Производственное освещение

30. К основным количественным характеристикам освещения относятся:

- световой поток F, составляющий часть лучистого потока, воспринимаемый человеком как свет (измеряется в люменах [лм]);

- сила света I=dF/dΩ как плотность светового потока в пределах телесного единичного угла Ω (измеряется в канделах [кд]);

- освещённость E=dF/dS как отношение светового потока, падающего на элемент поверхности dS (измеряется в [лк]);

- коэффициент отражения ρ=Fотр/Fпад как отношение отраженного светового потока к падающему (при значениях ρ>0,4 фон считается светлым, при 0,2< ρ<0.4 – средним и при ρ<0.2 –тёмным);

- яркость L=dI/dS·cosφ как поверхностная плотность силы света в заданном направлении, равная отношению силы света к площади проекции светящейся поверхности на плоскость, перпендикулярную этому направлению (измеряется в [кд/м2]);

- контраст объекта с фоном K=(Lф-Lо)/ Lф, где Lо и Lф - яркость объекта и фона соответственно (при K>0.5 контраст считается большим, при 0,2<K<0.4 - средним и при K<0.2 – малым; при K=0 объект и фон могут быть различимы только по цвету).

31.Основные качественные характеристики освещения - это:

-коэффициент пульсации светового потока K=[(Emax – Emin)/2]·100 %;

-спектральный состав;

-видимость V характеризует способность глаза воспринимать объект. Она зависит от освещённости, размера объекта, его яркости, контраста объекта с фоном, длительности экспозиции. Видимость определяется как V=К/Кпор, где Кпор – пороговый или наименьший различимый глазом контраст, при небольшом уменьшении которого объект становится неразличимым на этом фоне;

-показатель ослеплённости Po=1000(V1/V2 – 1), где V1 и V2 - видимость объекта различения соответственно при экранировании и наличии ярких источников света в поле зрения. Экранирование источников света осуществляется с помощью щитков, козырьков и т.п.

32. Глаз человека имеет наибольшую чувствительность к излучению с длиной волны 540 - 550 нм

(желто-зеленый цвет).

33. К области инфракрасного (ИК) излучения относится диапазон длин волн от 770 до 340000 нм.

34. К области ультрафиолетового (УФ) излучения относится диапазон длин волн от 10 до 380 нм.

35. Яркость поверхности определяется как L=dI/dS·cosφ. Подставляя исход­ные данные и учитывая, что cos60°=0,5, получаем L=0,25/(0, 5·10-4 · 0,5) =10000[кд/м2].

36. Коэффициецт отражения находится как ρ = Fотр/Fпад, а освещенность E=Fпад /S, откуда для наших исходных данных получаем следующие значения ρ = 150/600=0,25 и E=600/4=150 [лк].

37. Пользуясь приведенными в предыдущей задаче соотношениями, получаем Fпад=Fотр/ρ= 300/0,6 = 500 [лм] и Е = 500/10 = 50 [лк].

38. Падающий на стену световой поток Fпад =ES =200·5=1000 [лм], поэтому отраженный световой поток Fотр, = Fпад∙ ρ = 1000·0,8 = 800 [лм].

39. Контраст находится как K≥L ф Lo│/L ф, откуда Lo =200±200·0,4. Следовательно, получаем два значения, при которых будет выполняться условие K≥0,4:Lо≤1 20кд/м2и Lо ≥280 кд/м2.

40. Аналогично предыдущей задаче, подставляя соответствующие значения яркостей, получаем К=|400-100|/400=0,75.

41.Среднее значение освещенности на рабочей поверхности Eср= (Emax+Emin) /2=(850+150)/2=500[лк], а коэффициент пульсаций светового потока Кп=((ЕmaxЕmin)/2Еср)×100 % =((850-150)/2∙500)∙100=70 [%].

42. Воспользовавшись формулой, приведенной в предыдущем ответе получаем E=Eср(1± Kп/100 ). Откуда Emax=500(l+20/100)=600 [лк]и Emin =500(1-20/100)=400 [лк].

43. Перераспределение светового потока связано с потерями внутри светильника, что учитывается его коэффициентом полезного действия η=Fсвет/ Fucm,где Fucm и Fсвет - световой поток источника и светильника соответственно.

44. Расчёт осветительных установок методом светового потока ведётся по формуле:

F=(100 EнSZK)/Nη, где F – световой поток одной лампы, установленной в светильнике; Eн – требуемое значение освещённости на рабочей поверхности от источников общего света; S – площадь помещения; Z – коэффициент неравномерности освещённости (Z=Eср/Emin); K – коэффициент запаса на загрязнение и старения светильников и ламп; N – число ламп во всех светильниках; η - коэффициент использования светового потока (учитывает КПД светильника, отражение от стен и потолка, соотношение между высотой подвеса светильников и площадью помещения). По найденному значению светового потока подбирается лампа. Если ламп с требуемым световым потоком нет или они не могут быть установлены в выбранном светильнике, то необходимо либо изменить тип светильников, либо их установку и высоту подвеса. Расчёт осветительных установок считается удовлетворительным, если расчётное значение освещённости отличается от требуемого не более чем на 10-20%.

При расчёте точечным методом значение освещённости в расчётной точке находят суммированием освещённостей, создаваемых в этой точке каждым из источников света E=∑Ei, где Ei=Ii×cosα/Hφ; Ii – сила света i-го источника в направлении на расчётную точку для данного типа светильника при установке в нём лампы со световым потоком F=1000 лм; H – высота подвеса светильника над рабочей поверхностью; α – угол между направлением на расчётную точку и нормалью к рабочей поверхности; φ – коэффициент перехода на наклонную или вертикальную поверхность. Если полученное значение освещённости в расчётной точке не соответствует требуемому, то пропорционально требуемой освещённости увеличивают или уменьшают значение F и по полученному значению светового потока подбирают соответствующую лампу. Если лампа найденной мощности не может быть установлена в светильнике, то необходимо либо изменить тип светильника, либо их расстановку и высоту подвеса.

Для ориентировочной оценки мощности P, потребляемой светильной установкой, может быть использована зависимость: P=ES/µη, где E – требуемая освещённость рабочей поверхности, S – площадь помещения, µ – светоотдача используемых источников света, η – КПД светильника.

45. При эксплуатации более экономична система комбинированного освещения, так как в этом случае требуются меньшие затраты электроэнергии на создание необходимой освещенности на рабочей поверхности.

46. В системе комбинированного освещения на долю общего должно приходиться не менее 10% освещенности на рабочей поверхности, то есть не менее 120 лк. Однако при использовании люминесцентных источников света лампы общего света должны создавать освещенность не менее 150 лк. Следовательно, именно такую освещенность и должно создавать общее освещение в данном случае.

47. В системе комбинированного освещения на долю общего должно приходиться не менее 10% освещенности на рабочей поверхности, то есть не менее 120 лк. Однако при использовании ламп накаливания лампы общего света должны создавать освещенность не более 100 лк. Следовательно, именно такую освещенность и должно создавать общее освещение в данном случае.

48. В помещениях с односторонним боковым освещением значение коэффициента естественной освещенности определяется как KEO=(Emin/ Eнар)·100 [%], где Emin - значение освещенности рабочей поверхности в точке, расположенной на расстоянии 1 м от противоположной оконному проему стены, a Eнар - освещенность, создаваема незатененным небосводом в тот же момент времени. Поскольку в дан­ном случае Emin =200 лк, a Eнар =10000 лк, то KЕ0=(200/10000)∙100=2 %.

49 Коэффициент естественной освещенности KEO=(Eвн/Eнар 100 %, откуда получаем:

КЕО = ( 100/8000)∙100 = 1,25 %.

50. А эта задача - ловушка для тех, кто правильно решил предыдущую. Поскольку освещенность на улице меньше 5000 лк, то необходимо использовать искусственное освещение, и, следовательно, в таких ус­ловиях незачем определять значение КЕО, хотя для любознательных сообщим КЕО = (100/3000)∙100 = 3,33 %.

51. Участок разлива ацетона в мелкую тару является пожаровзрывоопасным производством, относящимся к классу B-I, так как пары легковоспламеняющейся жидкости постоянно находятся в воздухе при выполнении операций технологического процесса. Следователь­но, в данном помещении можно использовать только светильники во взрывозащищенном исполнении, а именно типа ВЗГ-200 с лампами накаливания.

52. Задача аналогична предыдущей. Малярный цех по характеристикам взрывопожароопасности также относится к классу B-I. Следователь­но, в данном помещении можно использовать только светильники во взрывозащищенном исполнении, а именно типа ВЗГ-200 с лампами накаливания.

53. Потребляемую мощность можно найти с помощью ориентировочно­го метода расчета как N = ES/μη, где Е - требуемая освещенность ра­бочей поверхности, S - площадь цеха, μ - светоотдача используемых ламп, η - к.п.д. осветительной установки. Откуда N= 450·100/15 = 3000 [Вт], если считать, что к.п.д. осветительной ус­тановки 100%. Обычно η = 75%, откуда

N = 3000/0,75 = 4000 [Вт].

54. Задача решается аналогично предыдущей. В этом случае N=500·100/50=1000 [Вт], или 1,33 кВт с учетом к.п.д.

55. Потребляемую мощность можно найти аналогично задаче №53 с по­мощью ориентировочного метода расчета как N=ES/μη, где Е - тре­буемая освещенность рабочей поверхности, S -площадь цеха, μ - све­тоотдача используемых ламп, η - к.п.д. осветительной установки. В данном случае светоотдачу необходимо найти самостоятельно как отношение светового потока лампы F к ее мощности N, то есть μ=F/W,=1600/40= =40 [лм/Вт], что, кстати, приходится делать доволь­но часто, так как в паспортах на лампы эта величина указывается да­леко не всегда. Откуда N= 200·100/40 = 500 [Вт], если считать, что к.п.д. осветительной установки 100%. Обычно η=75%, откуда N = 500/0,75 = 667 [Вт].

56. Освещенность некоторой точки горизонтальной поверхности, создаваемая несколькими светильниками может быть представлена как Es=∑Ei,, где Ei=Ii cos3α/H2 - освещенность, создаваемая i-м светильником, Ii - сила света, испускаемого светильником под углом α относительно нормали к поверхности и Н - высота подвеса светильника над рабочей поверхностью. В нашем случае H=2,8 - 0,8=2 м, где 0,8 - высота рабочей поверхности от уровня пола. Откуда, учитывая, что светильники одинаковы и cos 60° = 0,5, получаем:

Es=2· 800· 0,125/4=50 [лк].

57. При искусственном освещении требуемая освещенность рабочей поверхности зависит от размера объекта различения, определяющего разряд работ, контраста объекта с фоном и характеристики фона (светлый или темный), определяющего подразряд работ, а также оттипа источников света (лампы накаливания или люминесцентные) системы освещения (общее или комбинированное).

58. При естественном освещении требуемая освещенность рабочей поверхности, задаваемая с помощью коэффициента естественной освещенности, зависит от размера объекта различения, определяющего разряд работ, а также от системы освещения (одностороннее или двухстороннее боковое, верхнее или комбинированное).

Электробезопасность

104.В результате воздействия электрического тока могут возникнуть местные электротравмы (ожоги, электрические знаки, металлизация кожи, механические повреждения, ослепление светом электрической дуги) или произойти электрический удар, который характеризуется общим поражением организма и может сопровождаться судорогами, потерей сознания, остановкой дыхания и/или сердечной деятельности, клинической смертью.

105.Сопротивление тела человека электрическому току складывается из сопротивления верхнего ороговевшего слоя кожи и сопротивления внутренних тканей. Величина омического сопротивления кожи зави­сит от ее состояния (поврежденная или нет, сухая или влажная) и приложенного напряжения. Сувеличением приложенного напряже­ния сопротивление кожи падает с десятков и сотен килом при на­пряжении менее 3 В до сотен Ом при напряжении свыше 100 В, что обусловлено ее низкой электрической прочностью. Кроме того, поскольку сопротивление тела человека носит активно-емкостной характер, величина сопротивления зависит от частоты приложенного напряжения, уменьшаясь с увеличением частоты. При измерении напряжений и токов прикосновения в соответствии с ГОСТ 12.1.038-88 сопротивление тела человека моделируется резистором сопротивлением от 0,85 до 6,7 кОм в зависимости от величины напряжения и продолжительности воздействия.

106.Разность потенциалов между двумя точками на поверхности земли на расстоянии шага (0,8 метра) называется напряжением шага или шаговым напряжением. Разность потенциалов между двумя точками, которых одновременно касается человек, носит название -напряже­ния прикосновения.

107.Под защитным заземлением понимают преднамеренное соединение нетоковедущих частей электрооборудования с землей или ее эквива­лентом. Принцип действия защитного заземления основан на сниже­нии до безопасной величины напряжения прикосновения, возникаю­щего при повреждении изоляции токоведущих частей электрообору­дования и появлении потенциала на его корпусах. Защитное заземле­ние применяют в трехфазных трехпроводных сетях с изолированной нейтралью при напряжении до 1000 Вис любым режимом нейтрали при напряжении свыше 1000 В.

108.Под занулением принято понимать искусственное соединение нетоковедущих частей электрооборудования с заземленной нейтралью сети. Проводник, с помощью которого выполнено это соединение, называется нулевым защитным проводником. В отличие от рабочего нулевого провода, по которому протекают токи уравновешивания фаз, в цепи защитного нулевого провода ток протекает только при появлении токов утечки на подключенные к нему части оборудова­ния. В результате при пробое фазы на корпус возникает режим короткого замыкания и поврежденный участок сети отключается с по­мощью плавкого предохранителя или автомата защиты. Однако до момента аварийного отключения на корпусе оборудования может существовать высокое напряжение, опасное для жизни. Поэтому защита в таких сетях должна срабатывать быстро. Зануление приме­няют в трехфазных четырехпроводных сетях с заземленной иейтралью при напряжении сети до 1000 В.

109. Во многих случаях быстродействие обычной защиты оказывается недостаточным (например, во взрывоопасных помещениях) или по­рог срабатывания защиты слишком высок. В таких случаях приме­няют защитное отключение - быстродействующую защиту, срабаты­вающую при появлении опасности поражения электрическим током. В зависимости от вида исполнения защита может срабатывать при появлении на корпусе электрооборудования напряжения, превы­шающего порог срабатывания реле, или отключать поврежденный участок сети, если ток утечки изоляции превышает допустимую вели­чину.

110. При занулении оборудования помимо первичного заземлителя нейтрали применяют вторичное заземление защитного нулевого проводa с целью обеспечения безопасности при случайном обрыве нейтра­ли. Цель вторичного заземления нейтрали - исключить возможность появления фазного напряжения на корпусах электрооборудования при замыкании фазы на землю.

111. В качестве естественных заземлителей могут использоваться ме­таллические конструкции, имеющие хороший контакт с землей - во­допроводные трубы, стальная оболочка бронированных кабелей и т.п. Не разрешается использовать в качестве естественных заземлителей трубы газопроводов, центрального отопления, канализации, свинцовые оболочки кабелей связи. Арматура железобетонных сооружений может использоваться в качестве естественных заземлителей, если она имеет антикоррозионное покрытие.

112. При заземлении электроустановок напряжением свыше 100 кВ допускается значение потенциала заземлителя до 10 кВ. При этом величина шагового напряжения и напряжения прикосновения могут достигать опасных для человека величин. Поэтому при заземлении установок на напряжение свыше 1000 В и токами замыкания более 500А разрешается применять только контурные заземляющие устройства, т.е. такие, которые располагаются на одной площадке с заземлённым оборудованием. Для снижения шагового напряжения и напряжения прикосновения осуществляют выравнивание потенциала по поверхности площадки за счет более частого расположения заземлителей и соединительных полос.

113. Одновременное снижение напряжения прикосновения и шага человека, работающего с электрооборудованием на открытой площадке, возможно при применении контурного заземления и выравнивании потенциала по поверхности площадки за счет более частого расположения заземлителей и соединительных полос.

114. Поскольку на дачном участке используется сеть с глухозаземлённой нейтралью, то использовать в качестве меры защиты заземление без занулениея недопустимо. В этом случае обязательно должно быть выполнено зануление, а самодельное заземляющее устройство может использоваться только в качестве вторичного заземлителя. Если использовать его в качестве единственной меры безопасности, то при пробое фазы на корпус величина тока замыкания составит I=220/30=7,3 А, что меньше порога срабатывания (10А), и защита не сработает.

115. Максимальный ток через вторичный заземлитель при пробое на корпус составляет Im = Uf /R0 = 220/20 = 11 [А]. Так как защита может сработать лишь при условии, что ее номинальный рабочий ток меньше тока короткого замыкания, то очевидно, что при мощности электрооборудования, равной или большей N = Uf ·Im=220·11 = 2420 [ВА], защита не сработает.

116. В сети с изолированной нейтралью величина тока замыкания фазы на корпус определяется величиной сопротивления изоляции неповрежденных фаз и не может превышать в данном случае значения I=Uf /(0,5Rf) =220/(0,5·106)= 4,4·10-4 [А], что существенно ниже рабочего тока предохранителя (1 А). Следовательно, защита не сработает.

117. Эта задача аналогична предыдущей. Поскольку и в этом случае величина тока замыкания не будет превышать 4,4·10-4 А, то защита, рассчитанная на рабочий ток 10 А, не сработает.

118.Аналогично задаче №116 найдем ток замыкания фазы на землю I=Uf/(0,5Rf)=220/(0,5·106) = 4,410-4[А]. При таком токе падение на­пряжения на заземлителе составит U=IR = 4,4·10-4 ·10 = 4,4·10-3 [В]. Следовательно, даже если человек будет находиться в зоне нулевого потенциала, напряжение прикосновения не превысит 4,4 мВ.

119. Отличие этой задачи от предыдущей заключается в том, что исполь­зуется не выносное, а контурное заземляющее устройство. В этом случае человек находится под тем же потенциалом, что и заземлитель. Следовательно, напряжение прикосновения будет близко к нулю не­зависимо от величины сопротивления заземлителя, и расчет можно не проводить.

120. При пробое фазы на корпус в сети с глухозаземленной нейтралью величина напряжения на корпусе будет определяться, в основном, па­дением напряжения на омическом сопротивлении фазного и защит­ного нулевого проводников, поскольку сопротивление первичного и вторичного заземляющих устройств существенно (в данном случае в 8 раз) выше сопротивления защитного нулевого проводника. Следова­тельно, напряжение прикосновения составит

Up= Uf··R0/(Rf+R0) = 220·0,5/(0,25+0,5)= 146 В.

121. Задача решается аналогично предыдущей. В этом случае:

Up=UfR0/(Rf+R0)=380·0,5/(0,25+0,5) = 254 [B].

122. Бетонный пол является токопроводящим, следовательно, цех отно­сится к помещениям с повышенной опасностью поражения электри­ческим током, и при напряжении сети с глухозаземленной нейтралью 220/380 В необходимо занулить корпуса станков. Токопроводящий пол, на котором установлены станки, будет в этом случае играть роль вторичного заземляющего устройства.

123. Поскольку помещение, в котором установлено оборудование, отно­сится к классу "без повышенной опасности поражения электрическим током", и напряжение сети менее 380 В, то в соответствий с требова­ниями ПУЭ занулять корпуса электрооборудования не требуется.

124. Так как напряжение сети равно 380 В, то несмотря на то, что поме­щение относится к классу "без повышенной опасности поражения электрическим током", корпуса необходимо занулить.

125. Так как работа на улице может рассматриваться как работа в особо опасном с точки зрения поражения электрическим током помещении, то напряжение питания переносного электроинструмента и светиль­ников не должно превышать 12В.

126. Для воробья, сидящего на проводе, напряжение прикосновения и шаговое напряжение суть одно и то же. Шаговое же напряжение в данном случае будет определяться только падением напряжения на омическом сопротивлении провода U = IRpL, где RP - погонное сопротивление провода, L - воробьиный шаг. Откуда, подставляя, данные из задачи, получаем U =100·0,001·0,05=0,005 [В]. Остальные данные нужны только для того, чтобы запутать картину, хотя с их мощью можно оценить ток утечки с воробья в воздух. Полагая, своим телом воробей шунтирует участок провода в 2 раза больший его шага, а ток утечки стекает с его клюва, получим, что I= U/(Rиз/2L) =1,2·105/(109/2·5·10-2)=

1,2·10-5[А] =12[мкА], что немного даже для воробья.

127. Безусловно, в этой ситуации наибольшей опасности подвергается сам "шутник", поскольку при пробое фазы на корпус транспортёра именно он оказывается под действием напряжения, близкого к фазному. Пьяный, лежащий на ленте транспортера, находится в относительной безопасности до тех пор, пока он не начнет с него слезать, так как даже если он касается металлических конструкций транспортера, напряжение прикосновения для него будет равно нулю, поскольку вся конструкция находится под одним потенциалом.

128. Цех гальванических покрытий можно смело отнести к особо опасным по поражению электрическим током помещениям, так как это особо сырое помещение и к тому же с химически активной средой.

129. Цех холодной штамповки можно отнести как к помещениям с повышенной опасностью поражения электрическим_током, так и к особо опасным, в зависимости от количества факторов повышенной опасности, которые мы сможем в нем обнаружить. По крайней мере один фактор - наличие металлических конструкций (штампов), соединенных с землей - присутствует всегда. А если в цехе еще и бетонный пол, что обычно всегда имеет место, то этого уже достаточно, чтобы отнести цех к особо опасным помещениям.

130. Контроль сопротивления заземляющих устройств осуществляют при вводе их в эксплуатацию и далее с периодичностью не реже одного раза в год в периоды наибольшего высыхания или промерзания грунта. Для контроля сопротивления заземляющих устройств применяются мегомметры типа МС-08, включаемые по схеме, представленной рис. 3(а), или амперметр, вольтметр и генератор переменного тока, включаемые по схемам, представленным на рис.3(б) (метод «амперметра-вольтметра») и рис.3(в) (метод "трех измерений"). В последнем случае сопротивление испытуемого заземлителя находят по результатам трех измерений как RX = 0,5(R1+R2-R3), где Ri, - значение сопротивлений, полученных при каждом из замеров.

Преимуществом метода амперметра-вольтметра является высо­кая точность измерений при использовании вольтметра с большим внутренним сопротивлением, а преимуществом метода трех измерений - возможность размещения вспомогательных электродов ближе 20 м от испытуемого заземлителя и возможность использования вольтметров с низким внутренним сопротивлением.

131.Сопротивление заземляющего устройства в этом случае находят как Rx=0,5(R1 + R2 - Rз) =

=0,5(10+7-5) = 6[Ом].

132. Зимой и летом удельное сопротивление грунта максимально, так как летом он высыхает, а зимой промерзает. Поэтому и сопротивление заземляющих устройств в это время года максимально. Если даже в этих условиях оно удовлетворяет требованиям безопасности, то весной и осенью эти требования будут выполнены с запасом,

Рис. 3. Схемы включения приборов для контроля

сопротивления заземляющих устройств.

Rx - испытуемое заземляющее устройство;

Ry и Rz -вспомогательные электроды

133. Для того чтобы проверить сопротивление изоляции 200 м провода, надо воспользоваться мегомметром, подключив его одним выводом к началу бухты провода. Второй вывод мегомметра надо подключить кметаллической емкости (ведру, тазику), в которую налит электролит (в простейшем случае слабый раствор поваренной соли или даже водопроводная вода, если ее собственное сопротивление невелико по сравнению с ожидаемым сопротивлением изоляции), и опустить бух­ту провода в электролит так, чтобы вся бухта за исключением начала и конца оказалась покрыта жидкостью. Начало, к которому подклю­чен вывод мегомметра, и конец не должны касаться электролита. Для того, чтобы найти погонное сопротивление изоляции, необходимо результат измерения умножить на длину провода, в данном случае на 200.

Рис. 4. Контроль сопротивления изоляции с помощью трёх вольтметров

134. Для контроля сопро­тивления изоляции применя­ются мегомметры тина M1101 на напряжение 100, 500 и 1000 В. Непрерывный контроль изоляции осуществляется только в сетях с изолирован­ной нейтралью. Например, рис.4 (контроль однофазных замыканий на землю). Сопротивление изоляции силовых и осветительных сетей на участке между двумя предохранителями или разъединителями должно быть выше 500 кОм.

135. Сопротивление изоляции силовых и осветительных сетей должно быть выше 500 кОм. Следовательно, эта сеть к эксплуатации непри­годна.

137. Это, безусловно, возможно, так как сопротивление заземляющего устройства для отвода статического электричества не должно пре­вышать 100 Ом, в то время как наибольшее сопротивление заземле­ния нейтрали в сети с гдухозаземленной нейтралью не должно пре­вышать 8 Ом (в худшем случае, если напряжение сети 127 В).

138. В этом случае целесообразно увеличить проводимость воздуха за счет применения ионизаторов (радиоизотопного или коронного электрического разряда). При этом увеличится скорость стекания за­рядов с поверхности перематываемой пленки и тем самым уменьшит­ся вероятность накопления зарядов статического электричества.

139. Причина здесь кроется в опасности образования зарядов статиче­ского электричества. Поскольку полиэтилен хороший диэлектрик с высоким поверхностным сопротивлением, то при перевозке горючих жидкостей в такой таре будет происходить накопление зарядов статического электричества, при разряде которых возможно образование искр и воспламенение или взрыв паров.

140. Ответ на этот вопрос аналогичен предыдущему, поскольку всё равно, по какой причине в полиэтиленовом баке плещется горючая жидкость.

141. В данном случае металлические конструкции бака необходимо заземлить.

142. Да, можно, так как допустимое сопротивление заземляющего устройства не должно превышать 100 Ом, что в данном случае выполняется.

143. В соответствии с "Санитарно-гигиеническими нормами допустимой напряженности электростатического поля" значение напряженности поля Е на рабочих местах не должно превышать 60 кВ/м при воздействии до 1 часа, а при воздействии свыше 1 часа до 9 часов допустимое значение E определяют по формуле: ,

где t – время воздействия. При напряжённостях свыше 20 кВ/м указанные нормативы применяют, если в остальное время рабочего дня Е не превышает 20 кВ/м. Следовательно, в данном случае допустимое время воздействия не должно превышать t = (60/25)2 = 5,76 [ч].

144. Для защиты населения от воздействия ЭППЧ ЛЭП устанавливаются санитарно-защитные зоны. Границы зоны по обе стороны трассы должны составлять: 20 м от крайних фазных проводов при напряжении 330 кВ; 30 м -500 кВ; 40 м - при 750 кВ; 55 м - при 1150 кВ. Следовательно, в данном случае жилой дом оказался в пределах санитарно-защитной зоны, поэтому необходимо либо изменить трассу ЛЭП, либо перенести в другое, более безопасное место, жилой дом.

145. Туристы не знают, на какое напряжение рассчитана ЛЭП, однако, если вернуться к предыдущей задаче, то мы увидим, что они оказались в пределах санитарно-защитной зоны ЛЭП, даже если ее рабочее напряжение минимально, т.е. 330 кВ. При этом напряженность электромагнитного поля в месте установки палатки может составлять 15 - 20 кВ/м. В соответствии с ГОСТ 12.1.002-84 время пребывания чело века в. зоне действия ЭППЧ устанавливается в зависимости от значения напряженности поля. При этом постоянное присутствие персонала на рабочем месте в течение 8 часов допускается только при Е < 5 кВ/м, а при 5<E<20 кВ/м допустимое время пребывания t [ч] рассчитывается по формуле t = (50/E - 2). Следовательно, при Е =20 кВ/м допустимое время пребывания t = 0,5 ч, что несколько маловато для отдыха, да и вряд ли отдых в таких условиях можно считать полноценным. Отсюда вывод: установка палатки в таком месте недо­пустима!

146. Так как по условиям задачи требуется защита от удара молнии с надежностью более 99%, то весь склад должен располагаться в зоне типа А защиты молниеотвода, формируемой конусом высотой Н и основанием с радиусом R=0,75H, где Н - высота молниеотвода. По­скольку конус должен накрывать весь склад, то радиус его основания должен быть больше или равняться диагонали площадки, следова­тельно, R≥√(l02+202) = 22,4 м, а высота молниеотвода, который должен располагаться в углу площадки, H ≥ 22,4/0,75 =30 м.

147. Эта задача аналогична предыдущей, но поскольку требуемая на­дежность зашиты от удара молнии всего лишь 95%, то склад может располагаться в зоне типа Б, формируемой конусом высотой 0,8H и основанием с радиусом 1,5H, где H - высота молниеотвода. Так как конус должен накрывать весь склад, то диаметр его основания дол­жен быть больше или равняться диагонали площадки, следовательно, R ≥ √ (202+202) = 28,2 м, а высота молниеотвода, который должен располагаться в углу площадки, H ≥ 28,2/1,5 = 18,6м..

148. Для населенных мест в диапазоне частот до 300 МГц нормируется напряженность электрической составляющей электромагнитного по­ля [В/м], а для частот свыше 300 МГц и до 300 ГГц нормируется плотность потока электромагнитного излучения [Вт/м2].

149. При воздействии электромагнитных полей радиочастот (ЭПРЧ) на живые организмы происходит поглощение энергии излучения, характеризуемое нагревом тканей тела. Особенно опасен такой нагрев для органов со слабой терморегуляцией (мозг, хрусталик глаза). Кроме теплового воздействия наблюдается специфическое биологическое, связанное с изменением ориентации клеток и молекулярных цепей в соответствии с изменением направления силовых линий поля и приводящие к изменениям в структуре клеток крови, в эндокринной системе, к помутнению хрусталика глаза.

150. Так как работник будет подвергаться воздействию ЭПРЧ от несколь­ких источников, работающих в частотном диапазоне с единым значени­ем предельно допустимого уровня, то суммарную интенсивность воздействия вычисляют как ЭHE1+ЭНЕ2+... +ЭНЕn ≤ ЭНEП где ЭНЕ=E2Т. В нашем случае суммарная энергетическая нагрузка составит (302+332+402)∙4=14000 [(В/м)2ч], что не превышает допустимое для данно­го диапазона частот значение 20000 (В/м)2ч. Следовательно, выполнять указанные работы при включенных передатчиках допустимо.

151. Так как источники излучения работают в частотных диапазонах с разными значениями предельно допустимого уровня, то должно выполняться условие: ЭНЕ1/ ЭНЕП1 + ЭНЕ1/ЭНЕП2+….+ ЭНЕn/ЭНЕПn В данном случае имеем 302∙4/20000+42∙4/800<1. Следовательно, выполнение работ возможно.

152. Так как источники излучения работают в частотных диапазонах с разными значениями предельно допустимого уровня, то должно выполняться условие ЭНППЭ/ ЭНППЭП+ ЭНЕ/ ЭНЕП≤1. Значение ППЭПДУ при работе в течение 4 часов в поле постоянно действующего передатчика составляет ППЭПДУ = ЭНППЭп/Т = 2/4 = 0,5 [Вт/м2], откуда получаем следующее соотношение 0,4/0,5+ 42∙4/800 = 0,88. Следовательно, в данном случае выполнение работ при включенных передатчиках возможно.

153. Из соотношения ЭНППЭ/ЭНППЭП+ЭНЕ/ЭНЕП ≤1 с учётом того, что ЭНППЭ = ППЭТ и ЭНЕ = Е2Т получаем для Т выражение вида Т=1/(А+В), где А = ППЭ/ЭНППЭп, а В = Е2/ЭНЕП. В данном случае А = 0,4/2 = 0,2, В = 42/800 = 0,02 и Т=1/0,22 = 4,54 [ч].

Ионизирующее излучение

154. Действие ионизирующего излучения на живые организмы за­ключается в разрыве молекулярных связей, изменении химической структуры соединений, входящих в состав организма, образовании "осколков" молекул - радикалов, обладающих высокой химической ак­тивностью, а иногда и чрезвычайно токсичных, нарушении структуры генного аппарата клетки. Это приводит к изменению ее наследственного кода и, следовательно, нарушает условия воспроизводства клеткой и организмом в целом себе подобных, что вызывает развитие раковых опухолей и появление мутантов в последующих поколениях. Биологический эффект воздействия ионизирующего излучения тем выше, чем выше уровень создаваемой им ионизации, т.е. пропорционален числу пар ио­нов, образующихся в тканях организма. Даже при незначительных дозах облучения происходит торможение функций кроветворных органов, на­рушение свертываемости крови, увеличение хрупкости кровеносных сосудов, ослабление иммунной системы. Большие дозы облучения приводят к гибели организма. При малых дозах облучения биологические эф­фекты носят стохастический (вероятностный) характер, причем неров­ность их возникновения пропорциональная дозе, но не имеет дозового порога, а тяжесть не зависит от нее. При больших дозах биологические эффекты носят детерминированный (предопределенный) xapaктep, при­чем для них характерно наличие дозового порога, выше которою тяжесть поражения зависит от дозы.

155. Под пределом годовой эффективной (или эквивалентной) дозы ионизирующего излучения понимается величина дозы, которая не может быть превышена за год. В соответствии с НРБ-96 все население делится на две группы: персонал, непосредственно работающий с источниками излучения, и население, включая персонал вне сферы производственной деятельности. В свою очередь, персонал делится на две группы: А - непосредственно работающие с техногенными источниками излучения, и Б - находящиеся по условиям работы в сфере их воздействия.

Эффективная доза в среднем за любые последовательные 5 лет не должна превышать 1 мЗв/год для населения и 20 мЗв/год для лиц группы А (но не более соответственно 5 и 50 мЗв/год). Для лиц группы Б дозы облучения не должны превышать 1/4 значений группы А (см. табл.1).

Нормируемые величины   Дозовые пределы
  Персонал (группа А)     Население  
Эффективная доза     20 мЗв/год в среднем за любые последовательные 5 лет, но не более50 мЗв/год     1 мЗв/год в среднем за лю­бые последовательные 5 лет, но не более 5 мЗв/год  
Эквивалентная доза за год в хрусталике, коже, кистях и стопах   150мЗв 500 мЗв   15мЗв 50мЗв  

Основные дозовые пределы не включают в себя дозы от природ­ных, медицинских источников и вследствие радиационных аварий. На эти виды облучения устанавливаются специальные ограничения. При одновременном воздействии источников внешнего и внутреннего облу­чения должно выполняться условие - отношение дозы внешнего облуче­ния к пределу дозы и отношения годовых поступлений отдельных ра­диоактивных изотопов к их пределам в сумме не должны превышать единицы.

Для студентов и учащихся в возрасте до 21 года, обучающихся с использованием источников ионизирующего излучения, годовые накоп­ленные дозы не должны превышать значений, установленных для насе­ления.

156. Поглощенная доза D=dE/dm - средняя энергия d E, передання излучением веществу в некотором малом объеме, отнесенная к массе вещества dm в этом объеме (измеряется в джоулях на килограмм или в специ­альных единицах системы СИ.- греях [Дж/кг = Гр]).

157. Активность радиоак вещества А= dNdt - число спонтанных ядерных превр-й dN за промежуток времени dt (измеряется в беккерелях [Бк = 1/с]);

158. Основные дозовые пределы не включают в себя дозы от природ­ных, медицинских источников и вследствие радиационных аварий.

159. Эквивалентная доза НTR = WRD - произведение поглощенной биоло­гической тканью дозы D на безразмерный взвешивающий коэффициент для данного вида излучения WR - введена для оценки опасности облуче­ния биологических тканей ионизирующим излучением произвольного состава (измеряется в зивертах [Зв]). Коэффициент WR, характepизует за­висимость неблагоприятных биологических последствий облучения ор­ганизма от поглощенной дозы. Для рентгеновского, гамма-излучения и электронов любых энергий WR = 1, для протонов с энергией до 2 МэВ WR= 5, для нейтронов с энергией 0.01-0.1 и 2-20 МэВ WR= 10, для аль­фа-частиц, тяжелых ядер отдачи и нейтронов с энергией (0.1-2) МэВ WR = 20.

160.Эффективная ожидаемая доза , где HT(t) – мощность эквивалентной дозы в биологической ткани T, τ – продолжительность воздействия. Если продолжительность воздействия неизвестна, то она принимается равной 50 годам для взрослых и 70 годам для детей (измеряется в зивертах). Применяется для оценки дозовой нагрузки организма при проживании человека на заражённой местности или ликвидации радиационной аварии.

161. Эффективная доза E=∑WTH, где H – эквивалентная доза в биологической ткани Т за время τ, а WT - взвешивающий коэффициент для этой ткани. Применяется для оценки риска возникновения отдалённых последствий облучения тела человека или его отдельных органов с учётом их радиочувствительности, измеряется в зивертах.

162. Коллективная эффективная доза S=ΣEiNi, где Ei - средняя эффективная доза для i-й группы людей, а Ni – число людей в этой группе. Коллективная эффективная доза применяется для оценки степени риска облучения группы людей (измеряется в [чел.·Зв]).

163. Для двенадцати органов человеческого тела в зависимости от их чувствительности к облучению установлены взвешивающие коэффициенты WT=0,01-0,2. Для прочих органов значение WT принимается равным 0,05.

164. Планируемое повышенное (сверх установленных дозовых пределов) облучение персонала при ликвидации аварии может быть разрешено при невозможности принять меры, исключающие превышение и может быть оправдано только спасением жизни людей, предотвращением дальнейшего развития аварии и облучения большого числа людей. Оно допускается только для мужчин старше 30 лет при их добро­вольном письменном согласии после информации о возможных дозах облучения и риске для здоровья.

165. При дозах облучения до 0,5 Зв риск возникновения стохастиче­ских неблагоприятных эффектов определяется как r=p(E)rЕE для одного человека или R =р(SЕ)rE SE длягруппы людей, где р (E) и р (SЕ) - вероят­ность события, создающего дозу Е или SE соответственно, rE = 5,6 10-1 1/чел· Зв для персонала и rE = 7,3·10-2 1/чел· Зв для населения - коэффици­ент риска смерти от рака и наследственных эффектов. Для событий с тя­желыми детерминированными последствиями принимается r=р(Е) и R=p(SЕ)N, где N - число людей, получивших дозу Е>0,5 Зв. Значения r не должны превышать 10-3 за год для персонала и 5·10-5 для населения. Минимальный уровень риска, ниже которого риск считается пренебрежимым и его дальнейшее снижение нецелесообразно, равен 10-6 за год.

166. Эффективная ожидаемая доза, которую получит ребенок за 30 лет, составит

Полагая, что мощность дозы остается неизменной все эти годы и равной HT(t)=0,3 мкЗв/ч, за τ =30 лет полу­чим Н=0,3·10 -6· 24×365×30=78,8·10-3 [Зв]. Так как мы не знаем радио-нуклидный состав источника излучения и не можем уточнить распре­деление этой дозы по тканям, то предположим, что все пораженные ткани имеют одинаковую радиочувствительность, определяемую взвешивающим коэффициентом WT=0,05. Тогда эффективная доза E =ΣWTH= 0,05·78,8·10-3=3,9·10-3 [Зв], и риск заболевания смертельным раком за 30 лет r=p(E)rE E=0,5·7,3·10-2·3,9·10-3=l4,3·10-5 (по условия задачи р(Е)=0,5, а для населения гE =7,3·10-2). Допустимый риск для населения не должен превышать 5·10-5 за год. Фактическое значение в расчете на один год жизни ~0,5·10-5, что почти в 10 раз ниже допустимого и превышает минимально значимый, равный 10-6, только в 5 раз. Однако, если предположить, что вся поглощенная до­за сосредоточена в гонадах, имеющих взвешивающий коэффициент WT=0,2, то тогда риск в расчете на год достигает величины 1,9·10-5 и приближается к опасному пределу.

167. Порядок хранения, транспортировки и захоронения радиоак­тивных веществ установлен санитарными нормами ОСП-72/87. Сбор отходов, их удаление для небольших предприятий производится центра­лизованно специализированными службами. Крупные потребители ра­диоактивных веществ осуществляют захоронение и утилизацию отходов самостоятельно. Перед утилизацией изотопы разделяют по степени активности, периоду полураспада и т.п. Для сокращения объема отходов их упаривают, сжигают, прессуют и т.п. Для предотвращения миграции радиоактивных изотопов с грунтовыми водами малоактивные отходы фиксируют с помощью битума или цемента в блоки, подлежащие даль­нейшему захоронению. Высокоактивные отходы остекловывают. Сброс радиоак в-в в составе сточных вод запрещен. Для захоронения радиоактивных веществ используются специальные могильники. Пункт захоронения должен располагаться не ближе 20 км от городов в районе, не подлежащем застройке, с санитарно-защитной зоной не менее 1 км от населенных пунктов и мест постоянного пребывания скота.

168. Предельно допустимые уровни ионизирующих излучений устанавливаются «Нормами радиационной безопасности» (НРБ-96) и гигиеническими нормативами ГН 2.6.1.054-96. Эти документы являются основными правовыми нормативными актами в области радиационной безопасности нашей страны.

Для защиты населения от природных источников излучения среднегодовая объемная активность изотопов радона и торона должна быть АRn +4,6АTn <100 Бк/м3 в воздухе вновь строящихся помещений и ме­нее 200 Бк/м3 в существующих, а мощность дозы гамма-излучения не должна превышать мощность дозы на открытой местности более чем на 0,3 мкЗв/ч. Вопрос о переселении жильцов (с их согласия) рассматрива­ется, если практически невозможно снизить это превышение до значений менее 0,6 мкЗв/ч. При облучении населения в медицинских целях не ус­танавливаются предельные дозовые значения и используются принципы обоснования по показаниям медицинских радиологических процедур. При проведении профилактических медицинских и научных исследова­ний для лиц, не имеющих медицинских противопоказаний, эффективная доза облучения не должна превышать 1 мЗв.

Пожарная безопасность

221. Под температурой вспышки понимается самая низкая температура, при которой над поверхностью горючего вещества образуются пары и газы, способные вспыхивать на воздухе при наличии источника зажигания, но скорость их образования недостаточна для поддержания процесса горения.

222. Под температурой воспламенения понимается самая низкая температура, при которой над поверхностью горючего вещества образуются пары и газы, способные вспыхивать на воздухе от источника зажи­гания, и скорость их образования достаточна для поддержания про­цесса горения.

223. Под темп самовоспламенения понимается самая низкая температура, при которой происходит резкое увеличение скорости экзотермических реакций, приводящее к возникновению горениясмеси без источника зажигания.

224. Огнестойкость конструкций зданий определяется пределом огнестойкости, то есть временем [ч] от начала испытаний конструкции по стандартному температурному режиму до возникновения одного из следующих дефектов: образования трещин или отверстий, сквозь которые проникают продукты горения или пламя; повышения температуры на не обогреваемой поверхности конструкции в среднем выше 140 0С; потери несущей способности; перехода горения на смежные конструкции или в смежные помещения; разрушения узлов крепления конструкций.

225. Для того чтобы поддерживался процесс горения, необходимо вы­полнение следующих условий: концентрация горючего вещества должна быть выше нижнего и ниже верхнего концентрационного предела горения; температура горючего вещества должна быть выше температуры воспламенения и скорость химической реакции окисления (горения) должна быть такой, чтобы выделяющегося при этом тепла было достаточно для поддержания необходимой температуры. Нарушение любого из этих условий ведет к прекращению горения, поэтому для тушения ЛВЖ можно использовать следующие приемы: снижение концентрации окислителя в зоне горения за счет введения в нее инертных газов (углекислоты, азота, водяного пара, дымовых га­зов с низким содержанием кислорода и т.п.); изоляцию зоны горения от кислорода за счет применения пены или порошков, отсекание пламени от массива ЛВЖ; охлаждение ЛВЖ до температуры ниже температуры воспламенения или отвод тепла из зоны горения за счет испарения воды или других инертных веществ (например, углекисло­ты); ингибирование реакции окисления (например, с помощью хладонов).

226. Из ответа на предыдущую задачу можем выбрать следующие вари­анты, не изменяющие качества жидкости: заткнуть колбу пробкой, чтобы исключить доступ кислорода или, если это по каким-то причи­нам невозможно, охладить колбу с жидкостью ниже температуры воспламенения.

227. Если фитиль свечи слишком корот, то с его пов-ти в зону гор поступает недостат кол-во паров парафина и их конц оказывается ниже нижнего концентрационного преде­ла горения. При слишком длинном фитиле образуется избыт кол-во паров парафина, их конц прибл-ся к верх­нему концентрационному пределу горения, и свеча нач коптить из-за недост О2.

228. Вода, исп-ся из гор-х дров, отбирает тепло из зоны горе­ния и блокирует поступл в зону горения О2. Поэтому для поддерж процесса гор необх отводить из зоны горе­ния вод пар и подавать в нее О2, что и достиг при разд огня.

229. Поскольку вода может нанести непоправимый ущерб архивным ма­териалам на бумажной основе, то в качестве первичных средств по­жаротушения необходимо использовать газовые огнетушители (углекислотные, бромэтиловые и т.п.) или порошковые.

230. В этом случае также исключается применение воды, поскольку, с одной стороны, она может полностью вывести из строя ЭВМ, а с дру­гой,- создает опасность поражения электрическим током для тушаще­го пожар, если ЭВМ не отключена от источника электроснабжения. Как и в предыдущем случае, в качестве первичных средств пожаро­тушения необходимо использовать газовые огнетушители (углекислотные, бромэтиловые и т.п.) или порошковые.

231. При горении тит стружки развивается чрезв высокая температура (> 1200 0С), поэтому примен огнетушителей на основе воды (пенных) недопустимо. Кроме того, титан реаг с углекислотой с обр карбида титана, что сопровожд еще большим выделением тепла. Поэтому применять углекислотные огнет также недопуст. Возможно прим порошковых и бромэтиловых огнет.

233. Автоматические пожарные извещатели могут работать, используя эффекты: тепловые, дымовые, световые, ультразвуковые, ультрафиолетовые.

234. Поскольку основным горючим веществом в данном случае будут электроизоляционные материалы, в процессе горения которых образуется большое количество дыма, то целесообразно использовать дымовые извещатели, которые могут сработать существенно раньше тепловых. Световые извещатели в этом случае могут не сработать вообще или сработать слишком поздно, так как очаг горения обычно скрыт кожухом ЭВМ.

235. Наиболее вероятной причиной возгорания в данном случае может быть самовоспламенение паров растворителя или краски на перегретых поверхностях деталей. Поэтому необходимо использование световых извещателей. Возможно также применение дымовых извещателей, поскольку в процессе горения лакокрасочных покрытий обычно, образуется большое количество дыма. Применение тепловых извещателей в данном случае нецелесообразно, так как в помещении и при отсутствии пожара наблюдается повышенная температура от су­шильных печей, что будет маскировать развивающийся пожар.

236. Спринклерные головки содержат легкоплавкий замок, срабаты­вающий при определенной температуре и открывающий доступ воде из головки в зону повышенной температуры, где, скорее всего, и рас­положена зона горения. При этом через остальные спринклерные го­ловки с несработавшими замками вода не поступает, что предотвра­щает возможный ущерб от порчи охраняемого имущества водой. Дренчерные головки не имеют замков и при включении дренчерной установки (вручную или от автоматического пожарного извещателя) вода через них будет орошать всю охраняемую системой площадь, препятствуя распространению огня и охлаждая продукты горения, которые могут провоцировать развитие пожара в соседних помеще­ниях. Поэтому дренчерные системы используются, как правило, для создания водяных завес, препятствующих распространению пожара из одного помещения в другое.

238. Если это помещение может быть загерметизировано и из него могут быть своевременно выведены люди, то для того, чтобы исключить порчу водой не пострадавшего от пожара имущества необходимо использовать установки газового пожаротушения. В противном случае придется применять установки порошкового пожаротушения.

239. Против этого предложения есть два существенных возраж. Участок разлива ацетона в мелкую тару мб отнесен к категории А - взрывопожароопасное пр-во, кото­рое не может располаг в зданиях V степени огнестойкости, к ко­торым относятся дерев здания. А во-вторых не выдержаны противопож разрывы между этими здан, кот должны сост в этом случае не менее 18м (см. табл.2).


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: