Шкала электромагнитных излучений условно включает в себя семь диапазонов:
2. Радиоволны
4. Видимое излучение
7. Гамма излучение
Принципиального различия между отдельными излучениями нет. Все они представляют собой электромагнитные волны, порождаемые заряженными частицами. Обнаруживаются электромагнитные волны, в конечном счете, по их действию на заряженные частицы. В вакууме излучение любой длины волны распространяется со скоростью 300 000 км/с. Границы между отдельными областями шкалы излучений весьма условны.
Излучения различной длины волны отличаются друг от друга по способу их получения (излучение антенны, тепловое излучение, излучение при торможении быстрых электронов и др.) и методам регистрации.
Все перечисленные виды электромагнитного излучения порождаются также космическими объектами и успешно исследуются с помощью ракет, искусственных спутников Земли и космических кораблей. В первую очередь это относится к рентгеновскому и g-излучениям, сильно поглощаемом атмосферой.
По мере уменьшения длины волны количественные различия в длинах волн приводят к существенным качественным различиям.
Излучения различной длины волны очень сильно отличаются друг от друга по поглощению их веществом. Коротковолновые излучения (рентгеновское и особенно g-лучи) поглощаются слабо. Непрозрачные для волн оптического диапазона вещества прозрачны для этих излучений. Коэффициент отражения электромагнитных волн также зависит от длины волны. Но главное различие между длинноволновым и коротковолновым излучениями в том, что коротковолновое излучение обнаруживает свойства частиц.
Рентгеновское излучение
Рентгеновское излучение - электромагнитные волны с длиной волны от 8*10-6 см. до 10-10 см.
Различают два вида рентгеновского излучения: тормозное и характеристическое.
Тормозное возникает при торможении быстрых электронов любым препятствием, в частности металлическими электронами.
Тормозное излучение электронов имеет непрерывный спектр, отличающийся от непрерывных спектров излучения, создаваемых твердыми телами или жидкостями.
Характеристическое рентгеновское излучение имеет линейчатый спектр. Характеристическое излучение возникает в результате того, что внешний быстрый электрон, тормозящийся в веществе, вырывает из атома вещества электрон, расположенный на одной из внутренних оболочек. При переходе на освободившееся место электрона более удаленного возникает рентгеновский фотон.
Устройство для получения рентгеновских лучей - рентгеновская трубка.

Схематическое изображение рентгеновской трубки.
X — рентгеновские лучи, K — катод, А — анод (иногда называемый антикатодом), С — теплоотвод, Uh — напряжение накала катода, Ua — ускоряющее напряжение, Win— впуск водяного охлаждения, Wout— выпуск водяного охлаждения.
Катод 1 представляет собой вольфрамовую спираль, испускающую электроны за счет термоэлектронной эмиссии. Цилиндр 3 фокусирует поток электронов, которые затем соударяются с металлическим электродом (анодом) 2. При этом появляются рентгеновские лучи. Напряжение между анодом и катодом достигает нескольких десятков киловольт. В трубке создается глубокий вакуум; давление газа в ней не превышает 10_омм рт. ст.
Электроны, испущенные раскалённым катодом, ускоряются (при этом рентгеновские лучи не испускаются, т. к. ускорение слишком мало) и ударяются об анод, где они резко тормозятся (при этом испускаются рентгеновские лучи: т. н. тормозное излучение)
В то же время выбивают электроны из внутренних электронных оболочек атомов металла, из которого сделан анод. Пустые места в оболочках занимаются другими электронами атома. При этом испускается рентгеновское излучение с определённой, характерной для материала анода, энергией(характеристическое излучение )
Для рентгеновских лучей характерна малая длина волны, большая «жесткость».
Свойства:
высокая проникающая способность;
действие на фотопластинки;
способность вызывать ионизацию в веществах, сквозь которые эти лучи проходят.
Применение:
- Рентгенодиагностика. При помощи рентгеновских лучей можно «просветить» человеческое тело, в результате чего можно получить изображение костей, а в современных приборах и внутренних органов
- Рентгенотерапия
- Выявление дефектов в изделиях (рельсах, сварочных швах и т. д.) с помощью рентгеновского излучения называется рентгеновской дефектоскопией.
- В материаловедении, кристаллографии, химии и биохимии рентгеновские лучи используются для выяснения структуры веществ на атомном уровне при помощи дифракционного рассеяния рентгеновского излучения (рентгеноструктурный анализ). Известным примером является определение структуры ДНК.
- В аэропортах активно применяются рентгенотелевизионные интроскопы, позволяющие просматривать содержимое ручной клади и багажа в целях визуального обнаружения на экране монитора предметов, представляющих опасность.