Рентгеноскопия и рентгенография являются основными методами рентгенологического исследования. Для изучения различных органов и тканей создан целый ряд специальных аппаратов и методов (рис. 2-3). Рентгенография по-прежнему очень широко используется в клинической практике. Рентгеноскопия применяется реже из-за относительно высокой лучевой нагрузки. К рентгеноскопии вынуждены прибегать там, где рентгенография или неионизирующие методы получения информации недостаточны. В связи с развитием КТ роль классической послойной томографии снизилась. Методика послойной томографии применяется при исследовании легких, почек и костей там, где отсутствуют кабинеты КТ.
Рентгеноскопия (греч. scopeo - рассматривать, наблюдать) - исследование, при котором рентгеновское изображение проецируется на флюоресцирующий экран (или систему цифровых детекторов). Метод позволяет проводить статическое, а также динамическое, функциональное изучение органов (например, рентгеноскопия желудка, экскурсия диафрагмы) и контролировать проведение интервенционных процедур (например, ангиографии, стентирования). В настоящее время при использовании цифровых систем изображения получают на экране компьютерных мониторов.
К основным недостаткам рентгеноскопии относятся относительно высокая лучевая нагрузка и трудности в дифференциации «тонких» изменений.
Рентгенография (греч greapho - писать, изображать) - исследование, при котором получают рентгеновское изображение объекта, фиксированное на пленке (прямая рентгенография) или на специальных цифровых устройствах (цифровая рентгенография).
Различные варианты рентгенографии (обзорная рентгенография, прицельная рентгенография, контактная рентгенография, контрастная рентгенография, маммография, урография, фистулография, артрография и пр.) используются с целью улучшения качества и увеличения количества получаемой диагностической информации в каждой конкретной клинической ситуации. Например, контактную рентгенографию используют при снимках зубов, а контрастную - для проведения экскреторной урографии.
Методики рентгенографии и рентгеноскопии могут применяться при вертикальном или горизонтальном положении тела пациента на стационарных или палатных установках.
Традиционная рентгенография с использованием рентгенологической пленки или цифровая рентгенография остается одной из основных и широко применяемых методик исследования. Это связано с высокой экономичностью, простотой и информативностью получаемых диагностических изображений.
При фотографировании объекта с флюоресцирующего экрана на пленку (обычно небольшого размера - фотопленка специального формата) получают рентгеновские изображения, применяющиеся обычно для массовых обследований. Эта методика называется флюорографией. В настоящее время она постепенно выходит из употребления вследствие замены ее цифровой рентгенографией.
Недостатком любого вида рентгенологического исследования является его невысокая разрешающая способность при исследовании малоконтрастных тканей. Применявшаяся для этой цели ранее классическая томография не давала желаемого результата. Именно для преодоления этого недостатка и была создана КТ.
Устройста МРТ томографа, блок схема.
Обзор аппаратуры
На рисунке представлена схема основных систем магнитно-резонансного томографа и некоторые из основных разводок. Этот обзор кратко обозначит функцию каждого из них. Некоторые из них будут подробно описаны в этой главе.
Вверху схемы расположены компоненты томографа, находящиеся в комнате сканирования магнитно-резонансного томографа. Поле Bo, необходимое для процесса сканирования, создается магнитом (magnet). Для создания градиента в Bo по направлениям X, Y и Z, внутри магнита расположены градиентные катушки (gradient coils). Внутри градиентных катушек находится РЧ катушка (RF coil). РЧ катушка создает магнитное поле B1, необходимое для поворота спинов на 90o или 180o. РЧ катушка также регистрирует сигнал от спинов внутри тела. Пациент располагается на управляемом компьютером столе пациента (patient table). Точность установки позиции составляет 1 мм. Комната сканирования окружена РЧ экраном (RF shield). Экран предупреждает излучение РЧ-импульсов с большой энергией за пределы клиники. Он также защищает томограф от различных РЧ сигналов от теле- и радиостанций. Некоторые комнаты сканирования окружены также магнитным экраном, который предупреждает магнитное поле от распространения слишком далеко по территории клиники. Современные магниты имеют магнитный щит, встроенный в магнит.
"Сердцем" томографа является компьютер (computer). Он контролирует все компоненты томографа. Источник РЧ-импульсов (RF source) и программатор импульсов (pulse programmer) являются РЧ компонентами, находящимися под контролем компьютера. Источник генерирует синусоиду нужной частоты. Программатор импульсов придает им форму sinc импульсов. РЧ усилитель (RF amplifier) увеличивает мощность импульсов от милливатт до киловатт. Компьютер также управляет программатором градиентных импульсов (gradient pulse programmer), который определяет вид и амплитуду каждого из трех градиентных полей. Градиентный усилитель (gradient amplifier) увеличивает мощность градиентных импульсов до уровня, достаточного для управления градиентными катушками.
Матричный процессор (array processor), имеющийся у некоторых томографов - это устройство, позволяющее проводить двумерное преобразование Фурье за доли секунды. Компьютер передает преобразование Фурье этому, более быстрому, устройству.
Оператор томографа производит ввод в компьютер через консоль управления (control console). Отображающая последовательность выбирается и модифицируется на консоли. Оператор может просматривать изображения на дисплее, расположенном на консоли, или распечатывать их на фотопринтере (film printer).
Следующие три части этой главы дают более подробное описание магнита, градиентных катушек, РЧ катушек и РЧ детекторе магнитно-резонансного томографе.
Магнит
Магнит является самой дорогой частью магнитно-резонансного томографа. Большинство магнитов являются сверхпроводящими. Это фотография сверхпроводящего магнита томографа силой 1.5 Тл. Сверхпроводящий магнит - это электромагнит сделанный из проводника, обладающего сверхпроводимостью. Провод, сделанный из сверхпроводящего материала, охлажденный жидким гелием до температуры, близкой к абсолютному нулю (-273.15o C или 0 K), имеет почти нулевое сопротивление. После пропускания тока по катушке, он продолжает проходить по ней пока катушка содержится при температуре жидкого гелия. (Некоторые потери происходят в связи с бесконечно малым сопротивлением катушки. Эти потери за год имеют размерность миллионных долей от основного магнитного поля.)
На следующем рисунке показано поперечное сечение сверхпроводящего магнита томографа. Длина сверхпроводящей проволоки обычно составляет несколько километров. Катушка провода охлаждается до температуры 4.2К, погружением в жидкий гелий (liquid helium). Катушка и жидкий азот находятся в большом криостате (или сосуде Дьюара). Этот сосуд обычно окружен сосудом Дьюара с жидким азотом (77.4К), который выполняет роль термоизолятора между комнатной температурой (293К) и жидким гелием.