Потенциальный код 2В1Q

На рис. 2.16, д показан потенциальный код с четырьмя уровнями сигнала для кодирования данных. Это код 2В1Q, название которого отражает его суть — каждые два бита (2В) передаются за один такт сигналом, имеющим четыре состояния (1Q). Паре бит 00 соответствует потенциал -2,5 В, паре бит 01 соответствует потенциал -0,833 В, паре 11 — потенциал +0,833 В, а паре 10 — потенциал +2,5 В. При этом способе кодирования требуются дополнительные меры по борьбе с длинными по­следовательностями одинаковых пар бит, так как при этом сигнал превращается в постоянную составляющую. При случайном чередовании бит спектр сигнала в два раза уже, чем у кодаNRZ, так как при той же битовой скорости длительность такта увеличивается в два раза. Таким образом, с помощью кода 2В1Qможно по одной и той же линии передавать данные в два раза быстрее, чем с помощью кодаAMIилиNRZI. Однако для его реализации мощность передатчика должна быть выше, что­бы четыре уровня четко различались приемником на фоне помех.

 

6 Логическое кодирование: избыточные коды и скремблирование

Для логического кодирования разработаны два основных способа уменьшения длинных последовательностей одинаковых бит:

§ избыточные коды;

§ скремблирование.

Избыточные коды

Избыточные коды базируются на разделение начальной последовательности бит на порции, которые нередко именуют символами. После чего, исходный символ подменяют на новый, содержащий наибольшее количество бит нежели исходный.

В свою очередь логический код 4В/5В, применяющийся в технологиях локальных сетей: FDDI и FastEthernet, заменяет подряд идущие 4 бита исходной последовательности на 5 бит. Из-за чего размер передаваемых данных увеличивается. В результате, вместо 16 битовых комбинаций, получаем 32 битовых комбинации, в которых можно выбрать такие комбинации бит, которые будут содержать наименьшее количество подрят идущих одиннаковых последовательностей бит. А оставшиеся 16 комбинаций пометить как запрещенные, что придает избыточному коду свойство распозновать искаженные биты. Если поступила запрещенная комбинация - сигнал исказился.

Код 4В/5В затем передается по линии с помощью физического кодирования по одному из методов потенциального кодирования, чувствительному только к длинным последовательностям нулей. Символы кода 4В/5В длиной 5 бит гарантируют, что при любом их сочетании на линии не могут встретиться более трех нулей подряд.

Использование таблицы перекодировки является очень простой операцией, поэтому этот подход не усложняет сетевые адаптеры и интерфейсные блоки коммутаторов и маршрутизаторов.

Скремблирование

Скремблирование (англ. scramble — перемешивать) — разновидность кодирования информации, для передачи по каналам связи и хранения, улучшаюшая спектральные и статиcтические характеристики.

Скремблирование есть приведение информации к виду, по различным характеристикам похожему на случайные данные.

Перемешивание данных скремблером перед передачей их в линию с помощью потенциального кода является другим способом логического кодирования.

Методы скремблирования заключаются в побитном вычислении результирующего кода на основании бит исходного кода и полученных в предыдущих тактах бит результирующего кода. Например, скремблер может реализовывать следующее соотношение

где Вi, — двоичная цифра результирующего кода, полученная на i-м такте работы скремблера, Ai — двоичная цифра исходного кода, поступающая на вход скремблера, Вi-3 и Bi-5 — двоичные цифры результирующего кода, полученные на предыдущих тактах работы скремблера, соответственно на 3 и на 5 тактов ранее текущего такта, операция исключающего ИЛИ (сложение по модулю 2).

Например, для исходной последовательности 111000000001 скрэмблер даст следующий результирующий код:

Таким образом, на выходе скремблера появится последовательность 111110001100, в которой нет последовательности из восьми нулей, присутствовавшей в исходном коде.

После получения результирующей последовательности приемник передает ее дескремблеру, который восстанавливает исходную последовательность на основании обратного соотношения:

Произведем обратную операцию с последовательностью 111110001100, для получения исходной последовательности: Получаем исходную последовательность: 111000000001.

Различные алгоритмы скремблирования отличаются количеством слагаемых, дающих цифру результирующего кода, и сдвигом между слагаемыми. Так, в сетях ISDN при передаче данных от сети к абоненту используется преобразование со сдвигами в 5 и 23 позиции, а при передаче данных от абонента в сеть — со сдвигами 18 и 23 позиции.

Для улучшения кода AMI используются два метода, основанные на искусственном искажении последовательности нулей запрещенными символами:

§ метод B8ZS (Bipolarwith 8-ZerosSubstitution) - исправляет только последовательности, состоящие из 8 нулей. Для этого он после первых трех нулей вместо оставшихся пяти нулей вставляет пять цифр: V-l*-0-V-l*. V здесь обозначает сигнал единицы, запрещенной для данного такта полярности, то есть сигнал, не изменяющий полярность предыдущей единицы, 1* — сигнал единицы корректной полярности, а знак звездочки отмечает тот факт, что в исходном коде в этом такте была не единица, а ноль.

  • метода HDB3 (High-DensityBipolar 3-Zeros) - исправляет любые четыре подряд идущих нуля в исходной последовательности. Каждые четыре нуля заменяются четырьмя сигналами, в которых имеется один сигнал V. Для подавления постоянной составляющей полярность сигнала V чередуется при последовательных заменах. Кроме того, для замены используются два образца четырехтактовых кодов. Если перед заменой исходный код содержал нечетное число единиц, то используется последовательность 000V, а если число единиц было четным — последовательность l*00V.

 

 

7 Адресация в ЛВС

В локальных сетях используется принцип адресации.

Присваивается IP-адрес компьютеру либо вручную (статический адрес), либо компьютер получает его автоматически с сервера (динамический адрес). Статический адрес прописывается администратором сети в настройках протокола TCP/IP на каждом компьютере сети и жестко закрепляется за компьютером.

В присвоении статических адресов компьютерам есть определенные неудобства:

- администратор сети должен вести учет всех используемых адресов, чтобы исключить повторы;

- при большом количестве компьютеров в локальной сети установка и настройка IP-адресов отнимают много времени.

Наряду с перечисленными неудобствами у статических адресов есть одно немаловажное преимущество: постоянное соответствие IP-адреса определенному компьютеру. Это позволяет эффективно применять политику IP-безопасности и контролировать работу пользователей в сети. К примеру, можно запретить определенному компьютеру выходить в Интернет или определить с какого компьютера выходили в Интернет и т.п.

Если компьютеру не присвоен статический IP-адрес, то адрес назначается автоматически. Такой адрес называется динамическим адресом, т. к. при каждом подключении компьютера к локальной сети адрес может меняться. К достоинствам динамических адресов можно отнести:

- централизованное управление базой IP-адресов;

- надежная настройка, исключающая вероятность дублирования IP-адресов;

- упрощение сетевого администрирования.

Динамический IP-адрес назначается специальной серверной службой DHCP (Dynamic Host Configuration Protocol), входящей в состав Windows Server 2003. В параметрах службы DHCP администратором сети прописывается IP-диапазон, адреса из которого, будут выдаваться другим компьютерам. Серверная служба DHCP, которая распространяет (сдает в аренду) IP-адреса называется DHCP-сервер. Компьютер, получающий (арендующий) IP-адрес из сети, называется DHCP-клиент.

Так как в своей работе мы используем Windows Server 2003 Standart, который поддерживает эту службу, то можно не приобретать IP-адрес.

DHCP может поддерживать способ автоматического динамического распределения адресов, а также более простые способы ручного и автоматического статического назначения адресов. Протокол DHCP работает в соответствии с моделью клиент-сервер. Во время старта системы компьютер, являющийся DHCP-клиентом, посылает в сеть широковещательный запрос на получение IP-адреса. DHCP – cepвер откликается и посылает сообщение-ответ, содержащее IP-адрес. Предполагается, что DHCP-клиент и DHCP-сервер находятся в одной IP-сети.

При динамическом распределении адресов DHCP-сервер выдает адрес клиенту на ограниченное время, называемое временем аренды (lease duration), что дает возможность впоследствии повторно использовать этот IP-адрес для назначения другому компьютеру. Основное преимущество DHCP – автоматизация рутинной работы администратора по конфигурированию стека TCP/IP на каждом компьютере. Иногда динамическое разделение адресов позволяет строить IP-сеть, количество узлов в которой превышает количество имеющихся в распоряжении администратора IP-адресов.

В ручной процедуре назначения статических адресов активное участие принимает администратор, который предоставляет DHCP – серверу информацию о соответствии IP-адресов физическим адресам или другим идентификаторам клиентов. DHCP-сервер, пользуясь этой информацией, всегда выдает определенному клиенту назначенный администратором адрес.

При автоматическом статическом способе DHCP-сервер присваивает IP-адрес из пула наличных IP-адресов без вмешательства оператора. Границы пула назначаемых адресов задает администратор при конфигурировании DHCP-сервера. Адрес дается клиенту из пула в постоянное пользование, то есть с неограниченным сроком аренды. Между идентификатором клиента и его IP-адресом по-прежнему, как и при ручном назначении, существует постоянное соответствие. Оно устанавливается в момент первого назначения DHCP-сервером IP-адреса клиенту. При всех последующих запросах сервер возвращает тот же самый IP-адрес.

DHCP обеспечивает надежный и простой способ конфигурации сети TCP/IP, гарантируя отсутствие дублирования адресов за счет централизованного управления их распределением. Администратор управляет процессом назначения адресов с помощью параметра «продолжительность аренды», которая определяет, как долго компьютер может использовать назначенный IP-адрес, перед тем как снова запросить его от DHCP-сервера в аренду

 

8 Протокол DNS

Протокол DNS является служебным протоколом прикладного уровня. Этот протокол несимметричен - в нем определены DNS-серверы и DNS-клиенты. DNS-серверы хранят часть распределенной базы данных о соответствии символьных имен и IP-адресов. Эта база данных распределена по административным доменам сети Internet. Клиенты сервера DNS знают IP-адрес сервера DNS своего административного домена и по протоколу IP передают запрос, в котором сообщают известное символьное имя и просят вернуть соответствующий ему IP-адрес.

Если данные о запрошенном соответствии хранятся в базе данного DNS-сервера, то он сразу посылает ответ клиенту, если же нет - то он посылает запрос DNS-серверу другого домена, который может сам обработать запрос, либо передать его другому DNS-серверу. Все DNS-серверы соединены иерархически, в соответствии с иерархией доменов сети Internet. Клиент опрашивает эти серверы имен, пока не найдет нужные отображения. Этот процесс ускоряется из-за того, что серверы имен постоянно кэшируют информацию, предоставляемую по запросам. Клиентские компьютеры могут использовать в своей работе IP-адреса нескольких DNS-серверов, для повышения надежности своей работы.

База данных DNS имеет структуру дерева, называемого доменным пространством имен, в котором каждый домен (узел дерева) имеет имя и может содержать поддомены. Имя домена идентифицирует его положение в этой базе данных по отношению к родительскому домену, причем точки в имени отделяют части, соответствующие узлам домена.

Корень базы данных DNS управляется центром Internet Network Information Center. Домены верхнего уровня назначаются для каждой страны, а также на организационной основе. Имена этих доменов должны следовать международному стандарту ISO 3166. Для обозначения стран используются трехбуквенные и двухбуквенные аббревиатуры, а для различных типов организаций используются следующие аббревиатуры:

· com - коммерческие организации (например, microsoft.com);

· edu - образовательные (например, mit.edu);

· gov - правительственные организации (например, nsf.gov);

· org - некоммерческие организации (например, fidonet.org);

· net - организации, поддерживающие сети (например, nsf.net).

Каждый домен DNS администрируется отдельной организацией, которая обычно разбивает свой домен на поддомены и передает функции администрирования этих поддоменов другим организациям. Каждый домен имеет уникальное имя, а каждый из поддоменов имеет уникальное имя внутри своего домена. Имя домена может содержать до 63 символов. Каждый хост в сети Internet однозначно определяется своим полным доменным именем (fully qualified domain name, FQDN), которое включает имена всех доменов по направлению от хоста к корню. Пример полного DNS-имени: citint.dol.ru.

В сетях TCP/IP компьютеры для общения между собой используют IP-адреса. Однако то, что удобно машинам, неудобно людям. Сама человеческая натура протестует против запоминания чисел типа 192.120.18.34. К тому же IP-адреса совсем не информативны. По IP-адресу невозможно понять, что это: сервер, ПК, маршрутизатор или сетевой принтер. Приятней работать с осмысленными именами, такими как sales-server. Тем не менее сетевые устройства обращаются друг к другу, используя IP-адрес, а не имена.

Решает эту проблему система именования сетевых объектов, которая отвечает за преобразование символьных имен в IP-адреса. Системе передается имя (например archie.univie.ac.at), а она возвращает IP-адрес (140.78.3.8).

Система имен доменов (Domain Name System, DNS) появилась середине 80-х годов. DNS реализует иерархическое пространство имен. Единицей измерения является домен (территория, область). Понятие домена DNS не надо путать с доменом Windows NT или доменом NIS. Они не имеют друг к другу никакого отношения. На Рисунке 4.7. приведена часть иерархической структуры DNS сети Internet.

Вся сеть представляется в виде единого иерархического дерева. На вершине располагается корневой домен (обозначается символом "●"). Ниже находятся домены первого уровня. Поскольку Internet развивался в первую очередь в США, это вызвало некоторый крен при формировании доменов первого уровня: Internet как бы оказался поделенным между США и всем остальным миром.

Наиболее известные домены первого уровня:

com - коммерческие организации (главным образом в США);

edu - учебные заведения США;

gov - правительственные учреждения США;

mil - военные учреждения США;

net - различные сетевые агентства и Internet-провайдеры;

int - международные организации;

org - некоммерческие учреждения;

код страны - двухбуквенный код для обозначения государства (ru - для России).

Ниже доменов первого уровня располагаются домены второго уровня и так далее вплоть до хостов. Для доменов первого уровня, обозначающих государства, доменами второго уровня часто бывают города (например, msk - для Москвы), а доменами третьего уровня - предприятия и организации.

Любой хост или домен в Internet однозначно идентифицируется так называемым полным доменным именем (Fully Qualified Domain Name, FQDN). Его иногда еще называют абсолютным доменным адресом.

Так, для сетевого устройства host1 полное доменное имя будет host1.company1.msk.ru. а для домена company1 - company1.msk.ru.

Домены в FQDN записываются справа налево в порядке подчинения и разделяются точками. Каждая отдельная составляющая FQDN называется меткой (label). Длина метки не должна превышать 63 символа, а полная длина FQDN - 255 символов. Допустимыми символами являются буквы английского языка, цифры и знак дефиса "-" (знак дефиса не может стоять в начале или конце метки). Регистр букв значения не имеет, т. е. company1.msk.ru. и COMPANY1.MSK.RU. обозначают один и тот же домен.

Конечная точка в полном доменном имени обозначает, во-первых, корневой домен, и, во-вторых, что используется абсолютная адресация.

Кроме абсолютной применяется и относительная доменная адресация. Когда два устройства находятся в одном и том же домене, они могут обращаться друг к другу по имени, не указывая полного доменного пути. Так, host2 обращается к host1 двумя способами:

· по полному доменному имени host1.company1.msk.ru.

· по относительному доменному адресу host1

В полном доменном имени конечную точку можно не ставить, поскольку обычно программное обеспечение TCP/IP подразумевает, что составное доменное имя (т. е. когда присутствует более двух меток) обозначает FQDN. Таким образом,

company1.msk.ru. и company.msk.ru.

Домены находятся в иерархическом подчинении друг другу, причем домены являются узлами дерева доменов, а хосты - листьями.

Понятие домена достаточно емкое и в то же время гибкое. Оно не ограничивается какими-то физическими границами, например границами IP-сети или сегмента Ethernet. Доменом DNS может быть и страна, и предприятие, и отдел банка. Один домен может включать как множество сетей, так и только часть одной сети или даже подсети.

Основное назначение DNS состоит в преобразовании имени хоста в его IP-адрес. На самом деле DNS является системой, не зависимой от протокола сетевого уровня, т. е. она может быть реализована не только в среде TCP/IP. Однако функции DNS этим не ограничиваются. DNS позволяет получить следующую информацию: IP-адрес хоста; доменное имя хоста по его IP-адресу; псевдонимы хоста, тип центрального процессора и операционной системы хоста; сетевые протоколы, поддерживаемые хостом; почтовый шлюз; почтовый ящик: почтовую группу; IP-адрес и доменное имя сервера имен доменов. Существует и ряд других, реже используемых параметров.

 

9 Протокол DHCP

IP-адреса могут назначаться сетевым узлам статически и динами­чески. При статическом назначении администратор сети вручную назначает IP-адреса для каждого узла в сети. Вместо этого можно назначать IP-адреса динамически посредством протокола DHCP.

Протокол DHCP (Dynamic Host Configuration Protocol - протокол динамической конфигурации узла) - протокол прикладного уровня стека протоколов TCP/IP. позволяющий динамически присваивать IP-адреса и другие сопутствующие параметры конфигурации для сетевых узлов. Например, часто в качестве параметров используют маску под­сети, IP-адреса основных шлюзов (маршрутизаторов) и DNS-серверов.

Протокол DHCP является клиент-серверным, то есть в его работе участвуют DHCP-клиент и DHCP-сервер. Передача сообщения DHCP (формат, которого приводится на рис. 7.8) осуществляется посред­ством транспортного протокола UDP, при этом сервер принимает со­общения на порт 67, а отправляет на порт 68. Поле «Код операции» может принимать два значения: BOOTREQUEST (1, запрос от клиента к серверу) и BOOTREPLY (2, ответ от сервера к клиенту). Длина поля 1 байт.Поле «Тин физического адреса» (Hardware Туре) определяет тип физического адреса, указанного в поле «Физический адрес клиента». Длина поля 1 байт. Допустимые значения этого поля определены в документе RFC 17(Ю. Например, для МАС-адреса это поле принимает значение 1.

Поле «Длина физического адреса» (Hardware Address Length) со­держит число в байт, которые выделены под физический адрес клиен­та. Для МАС-адреса значение этого поля равно 6. Дтина поля 1 байт.

Поле «Количество транзитов» (Hops) содержит количество про­межуточных маршрутизаторов, через которые прошло сообщение. Клиент устанавливает это поле в 0. Длина поля 1 байт.

Поле «Идентификатор транзакции» (Transaction ID) позволяет соотнести последующие ответы с запросом в рамках одной DHCP-транзакции. Значение этого поля задается клиентом в начале процесса получения IP-адреса. Длина поля 4 байта.

Поле «Количество секунд» (Seconds) содержит время в секундах с момента начала процесса получения IP-адреса. Может не использо­ваться (в этом случае оно устанавливается в 0). Длина поля 2 байта.

Поле «Флаги» содержит флаги специальных параметров протоко­ла DHCP. Дтина поля 2 байта. Старший бит определен как флаг BROADCAST, а остальные биты зарезервированы для будущего при­менения и должны быть равны 0. Флаг BROADCAST устанавливается в 1 если клиент требует широковещательного ответа.

Поле «IP-адрес клиента» (Client IP Address) заполняется только в том случае, если клиент уже имеет собственный IP-адрес (это воз­можно, если клиент выполняет процедуру обновления адреса по исте­чении срока аренды). Дтина поля 4 байта. Поле «Ваш IP-адрес» (Your IP Address) содержит IP-адрес предлагаемый или уже назначенный сервером. Длина поля 4 байта.

Поле «IP-адрес сервера» (Server IP Address) заполняется сервером при ответе на запрос. Длина поля 4 байта. Поле «IP-адрес шлюза» (Gateway IP Address) задает адрес агента-ретранслятора DHCP, кото­рому сервер должен посылать ответы в случае, если клиент и сервер находятся в различных подсетях. Дтина поля 4 байта. Поле «Физиче­ский адрес клиента» (Client Hardware Address) обычно содержит МАС-адрес. Дтина ноля 16 байт.

Необязательное поле «Имя сервера» (Server Host Name) имя сер­вера в виде ASCIZ-строки. Дтина поля может достигать 64 байга.

Необязательное поле «Имя файла загрузки» (Всю! File Name) со­держит имя файла на сервере, используемое бездисковыми рабочими станциями при удаленной загрузке. Представлено в виде ASCIZ-строки. Длина поля до 128 байт.

Поле «Опции» (Options) содержит различные дополнительные па­раметры конфигурации. Все они описаны в документе RFC 2132. В начале этого поля указываются четыре «магических» числа со значе­ниями 99, 130, 83, 99, позволяющих DHCP-серверу определить нали­чие этого поля. Поле имеет неременную длину.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: