Двигатель с использованием энергии ядерного синтеза

Сферический объем дейтерия и гелия-3, охлажденных до температуры -270°С, инжектируется в двигатель с помощью специальной пушки. В момент, когда этот объем попадает в заданную точку полости двигателя, в него одновременно выстреливается множество пучков высокоэнергетических электронов, создаваемых генераторами. При этом топливо сжимается и нагревается до температуры, достаточной для инициирования реакции ядерного синтеза. При взрыве топлива образуется облако ионизированного газа, напоминающее шаровую молнию, которое выталкивается наружу магнитным полем, ограниченным металлическими стенками камеры двигателя. Сила взрыва через магнитное поле передается стенкам камеры двигателя, а продукты взрыва выбрасываются из нее. Энергия взрыва идет на создание тяги, а часть ее отбирается из продуктов взрыва с помощью кольца, размещенного на выходе ускорительной части двигателя. Эта энергия затрачивается на «перезарядку» генераторов электронных пучков, готовых снова выстрелить в новый объем ядерного топлива, и процесс повторяется. Частота взрывов может достигать 250 Гц, а мощность такого двигателя будет в несколько раз превышать мощность, вырабатываемую в настоящее время на всем земном шаре.

Но даже при использовании таких мощных ракетных двигателей для разгона корабля до скорости, составляющей 10% скорости света, потребуется большое количество топлива. Проектом «Дедал» предусматривалось проведение самой скромной экспедиции к звезде Барнарда, удаленной от нас на расстояние в 6 световых лет, куда будет доставлен полезный груз массой 450 т. Попыток остановить или затормозить корабль предприниматься не будет, и тем не менее даже в этом случае потребуется около 50 000 т ядерного топлива. В этом и заключается главная проблема. В то время как дейтерий (или тяжелый водород) имеется на Земле в достаточном количестве (главным образом в морях), другое ядерное топливо, гелий-3 (или легкий гелий), на Земле фактически не существует. В настоящее время небольшие количества этого элемента получают в ядерных реакторах, и поэтому он очень дорог. Один килограмм гелия-3 стоит несколько миллионов долларов! Очевидно, чтобы выделить необходимые для звездолета 30 000 т гелия, следует изыскать какие-то другие источники.

К счастью, при образовании Вселенная состояла главным образом из водорода и гелия. На каждые десять атомов водорода приходился один атом гелия. Более того, на каждые 10 000 атомов гелия приходился один атом гелия-3. И другие планеты Солнечной системы состоят из элементов, появившихся в процессе образования Вселенной. Поэтому если будут разработаны соответствующие методы выделения гелия-3, возможность его получения в громадных количествах представляется вполне реальной. По оценкам, в атмосфере Юпитера должно содержаться около 1016т гелия-3, и этого количества вполне достаточно для проведения многих межзвездных экспедиций.

Уровень техники в будущем без сомнения позволит создать звездолет, но камнем преткновения, по-видимому, будет необходимость выжидания такого момента, когда выбранная траектория межпланетного путешествия внутри Солнечной системы позволит извлечь все запасы топлива в окрестности Юпитера. Для выбора такой траектории может потребоваться целое столетие, и эта цифра определяет темпы реализации всего проекта.

В результате детальной проработки звездолета «Дедал» была предложена двухступенчатая схема корабля. Каждая ступень имеет свой собственный пульсирующий ядерный двигатель. В шести сферических сбрасываемых баках первой, наиболее тяжелой ступени запасено 46 000 т топлива. В четырех таких же баках второй ступени содержится 4000 т топлива. Несмотря на то что вторая ступень по размерам меньше первой, она является «сердцем» корабля, поскольку на ее борту находится крайне важный 450-тонный полезный груз с приборами и роботами-«смотрителями». Полезный груз размещен в головной части второй ступени, защищенной от непрерывной бомбардировки микроскопической межзвездной пылью большим плоским эрозионным экраном из бериллия. В состав полезного груза входят 18 вспомогательных космических зондов, каждый из которых имеет свою собственную двигательную установку, предназначенную для их доставки в близлежащие к исследуемой звезде области, когда корабль «Дедал» будет пролетать мимо нее. Управление полетом в течение всей экспедиции будет осуществляться центральной быстродействующей ЭВМ с большой емкостью памяти, которая размещена на борту второй ступени. ЭВМ должна будет обладать способностью принимать ответственные решения без вмешательства человека, поскольку на столь огромных расстояниях от Земли задержка в передаче информации будет составлять несколько лет и такая связь не может быть использована для принятия оперативных решений.

Ремонт систем и аппаратов, входящих в состав полезной нагрузки и предназначенных для исследования дальнего космоса, которые должны быть размещены как можно дальше от основного блока звездолета, чтобы не находиться в создаваемой кораблем локальной зоне загрязнения окружающего пространства, будет производиться роботами-«смотрителями». На борту «Дедала» будут находиться два 10-тонных робота с ядерными источниками энергии, собственными двигательными установками, а также манипуляторами и наборами чувствительных элементов. Каждый робот-«смотритель» будет иметь автономный управляющий «электронный мозг» с высокими «интеллектуальными способностями», а для решения более сложных проблем или получения исходных данных будут использоваться каналы микроволновой связи с основными ЭВМ экспедиции, расположенными в первой ступени корабля «Дедал».

Во время быстрого пролета мимо намеченной в качестве цели звезды корабль рискует столкнуться с каким-либо крупным осколком, который может двигаться по орбите вокруг этой звезды. Предусмотренный для защиты в межзвездном пространстве экран здесь будет бесполезен, поскольку столкновение, например с телом массой в 1 г, будет эквивалентно воздействию взрыва 150 т тринитротолуола, достаточного для мгновенного прекращения экспедиции. Так называемая система предотвращения неожиданных столкновений будет следить за движением находящегося в 200 км впереди корабля плотного облака, состоящего из очень мелких частиц пыли. Облако искусственно будет создаваться и поддерживаться космическим аппаратом небольших размеров - «пылевым жуком». Контроль за тем, чтобы облако находилось действительно впереди основного корабля, будет осуществляться лазерным дальномером, обеспечивающим высокую точность измерений. Таким образом, любой крупный объем на трассе полета звездолета сначала столкнется с пылевым облаком, и при этом произойдет столь интенсивное выделение тепла, что тела с массой до полутонны будут разрушены и испарятся практически мгновенно. За время, пока в эту зону войдет основной блок корабля (около пяти тысячных долей секунды), встретившееся на пути тело будет фактически рассеяно, и межзвездному эрозионному экрану останется лишь обеспечить защиту от образовавшейся при взрыве плазмы.

После пролета мимо намеченной звезды будет передана информация обратно в Солнечную систему. В конструкции корабля «Дедал» предусмотрено четыре мощных ядерных реактора, вырабатывающих необходимую энергию для передачи информации на расстояние в шесть световых лет. Потребуются три года для неоднократной передачи всей информации и шесть лет для достижения сигналами Земли. Добавим сюда продолжительность экспедиции от момента старта до встречи с целью (около 50 лет) и найдем, что пройдет почти 60 лет, пока будут получены какие-либо научные данные со звездолета. Кроме того, на конструирование, изготовление, испытания и заправку топливом такого корабля потребуется 15-20 лет. Так что время между началом разработки проекта и получением первых научных данных может превысить продолжительность человеческой жизни. В настоящее время неизвестны другие практические способы полета к звездам. Стоимость межзвездного полета будет огромна, и потребуются совместные экстраординарные усилия для достижения успеха экспедиции. Возможно, что такое мероприятие может оказаться целесообразным только после того, как люди начнут постоянно жить в открытом космосе и будут считать его естественной окружающей средой.

Первая в мире инженерная проработка беспилотного космического корабля для исследования одной из ближайших звезд была выполнена рабочей группой Британского межпланетного общества в период 1973-1977 гг. Цель полета - достижение звезды Барнарда, отстоящей от Земли на расстоянии 6 световых лет. Участники рабочей группы убедились, что разработка, основанная на экстраполяции развития техники на начало XXI столетия, может служить лишь первым приближением к решению проблемы межзвездного перелета. Результаты выполненной проработки говорят о том, что это будет грандиозная задача, для решения которой потребуется настолько большой космический корабль, что по сравнению с ним ракета «Сатурн-5», доставившая человека на Луну, покажется карликом. Звездолет «Дедал», по современным представлениям, должен иметь массу ~54 000 т, т. е. примерно в 20 раз больше, чем ракета «Сатурн-5», и нести 450 т полностью автоматизированного полезного груза. Из-за слишком большого времени прохождения радиокоманд между Землей и звездолетом управлять им и осуществлять все необходимые действия в исследовательской фазе полета должен «электронный мозг» - электронная вычислительная машина.

За несколько лет до встречи со звездой Барнарда к ее планете, или луне, или к самой звезде будет послано 18 космических зондов, которые будут передавать результаты исследований центральной ЭВМ звездолета.

Наиболее детально проработана концепция ядерного пульсирующего ракетного двигателя, основанная на исследованиях управляемого термоядерного синтеза. Электронный пучок инициирует в двигателе реакцию синтеза дейтерия и гелия-3. Поскольку гелий-3 является редко встречающимся изотопом гелия, то на начальном этапе работы возникнут определенные трудности.

Характеристики корабля «Дедал» были выбраны в соответствии с принятым в начале исследования решением, что полет к звезде Барнарда (расстояние до которой менее 6 световых лет) должен быть осуществлен за время жизни людей, принимавших участие в разработке этого проекта, т. е. примерно за 50 лет. Это означало, что двигатель корабля «Дедал» должен обеспечить скорость движения 38 600 км/с. После всестороннего анализа возможных методов создания тяги был сделан вывод, что наилучшим вариантом является пульсирующий ядерный двигатель. Принцип действия такого двигателя основан на идее установки для управляемого термоядерного синтеза, в которой сферические объемы дейтерия и гелия-3 инжектируются в центр магнитной ловушки. Когда сферический объем достигнет заданной точки, в него одновременно выстреливают несколько мощных электронных пучков. Частота повторения взрывов 250 Гц. На рисунке показана принципиальная схема двигателя, который может быть создан в XXI в.

Зонды для исследования планет Такие зонды должны запускаться с корабля «Дедал» за 1,2 и 7,2 года до встречи со звездой Барнарда. Они предназначены для исследования обширных областей звездной системы, включая некоторые планеты и луны. Типичный большой зонд массой 10 т имеет форму узкого усеченного конуса длиной 20 м, обеспечивающую удобную укладку полезного груза. Малые межзвездные зонды запускаются с помощью роботов-«смотрителей». Их задача - исследовать потоки заряженных и нейтральных частиц, а также волны и поля в космическом пространстве.

Звездолет «Дедал» имеет двухступенчатую схему. Двигатели размещаются в хвостовой части, а большие топливные баки - по периферии конструкции в связи с необходимостью их отстыковки и сброса в полете. Между баками находится служебное оборудование космического аппарата, включая узлы вспомогательной энергоустановки и топливо. Отсек полезного груза, расположенный за головным защитным экраном, имеет палубы, где размещаются зонды, запускаемые с корабля, телескопы, роботы-«смотрители» и электронно-вычислительные машины. Главный вычислительный комплекс, навигационный, осуществляет управление всем кораблем, контролирует проведение научных наблюдений и даже производит текущий ремонт с помощью телеуправляемых роботов-«смотрителей». Он также дает команды на запуск вспомогательных зондов, которые передают научные данные для анализа на борту. Вся собранная кораблем информация кодируется главным вычислительным комплексом, и обработанные результаты, видеозаписи, данные об исследуемой звезде, планетах и лунах, магнитных полях, радиационных поясах и т. п. передаются на Землю. Сборка звездолета должна производиться в космосе, вероятно в районе Юпитера, из-за особых требований к производству ядерного топлива, включающего гелий-3. При высокой скорости, с которой движется корабль (в конце активного участка 12-13% скорости света), серьезнейшей проблемой будет эрозия конструкции вследствие столкновений в полете с частицами космической пыли. Поэтому на корабле устанавливается защитный противоэрозионный экран из бериллия, прикрывающий двигатель второй ступени. Выполненное Британским межпланетным обществом исследование показало, что человечеству предстоит пройти долгий путь, прежде чем звездолеты перестанут быть фантастикой. Крайне необходима разработка новых принципов создания реактивной тяги в космосе, таких, как теоретически обоснованная возможность движения вследствие аннигиляции вещества и антивещества.

 

Автоматические роботы-«смотрители», система управления которыми способна принимать самостоятельные решения, предназначены для обслуживания и запуска зондов, а также облета вокруг основного аппарата для установления и устранения утечек и других неисправностей узлов и систем.

Заяц и черепаха

Как мы теперь видим, первые межзвездные экспедиции будут, вероятно, дальнейшим развитием современных исследований планет с применением более сложных космических зондов. И это все? Сможет ли когда-нибудь человек сам отправиться в полет к звездам? Появятся ли более совершенные двигательные установки?

Вполне вероятно, что межзвездные исследования будут развиваться не только по пути создания несложных космических аппаратов типа «Дедал». Как именно они будут развиваться, в настоящее время сказать трудно, но уже сейчас намечаются два радикально отличающихся подхода к решению этой проблемы. Первый из них предусматривает создание более мощных двигателей, разгоняющих корабль до скорости, приближающейся к скорости света. Когда удастся приблизиться к предельно достижимой скорости, начнут проявляться эффекты, предсказанные теорией относительности: время на борту звездолета будет течь значительно медленнее, чем на Земле. Если космический аппарат будет иметь достаточно высокую скорость, члены экипажа смогут осуществить путешествие в доступную нам область Вселенной в течение своей жизни. К моменту возвращения путешественников на Землю окажется, что люди, оставшиеся на Земле в начале этой экспедиции, давно умерли; возможно, даже Солнце перестанет существовать.

При другом подходе аппараты для межзвездных экспедиций развивают небольшие скорости, составляющие несколько процентов скорости света. Для создания двигателей с такими характеристиками вполне подходят технические решения, заложенные в проекте «Дедал». В этом случае время путешествия будет продолжительным.

Прежде чем исследовать далее оба указанных подхода, отметим, что только «быстрые» звездолеты, направляющиеся к самым близким от нас звездам, успеют передать какую-либо информацию людям, принимавшим участие в их запуске. Поскольку число таких полетов и выбранных для изучения объектов, по-видимому, будет ограничено, то фактически результатами межзвездных исследований смогут воспользоваться лишь следующие поколения, так как информация, посланная с борта звездолета на Землю, достигнет цели через сотни лет, а в худшем случае вообще не достигнет ее.

Прежде всего выясним, каковы перспективы достижения больших скоростей. Сначала прикинем, что можно «выжать» из обычных ракет. Предположим, что будут отработаны суперреакции ядерного синтеза, позволяющие отобрать при столкновении атомов легких элементов всю запасенную в них энергию. К.п.д. преобразования массы в энергию в таком процессе составляет около 1%. Тогда мы вправе ожидать, что ракета, которая сначала разгоняется до максимальной скорости, а затем, долетев до цели, затормаживается, достигнет скорости, составляющей около 30% скорости света. И если собственная масса двигателя невелика, то до звезды Альфа Центавра можно долететь за 15 лет. К сожалению, сейчас никто не в состоянии сказать, какова будет масса такого двигателя, поскольку реакции, которые предполагается в нем использовать, пока происходят лишь внутри звезд, где гравитационные силы удерживают вещество от разлета. Согласно расчетам, в таких малых объемах, как камеры двигателей звездолетов, вряд ли удастся добиться высокой степени сгорания топлива. Отсюда следует вывод, что ракеты, использующие энергию ядерного синтеза, будут иметь жесткие ограничения, а их характеристики будут ненамного лучше характеристик, заложенных в проекте «Дедал». Конечно, даже такие небольшие улучшения могли бы позволить автоматическим зондам замедляться у исследуемой звезды, что увеличило бы объем получаемой информации.

Известна ракетная система, которая может оказаться перспективнее. Это широкоизвестная фотонная ракета, в которой вещество полностью аннигилирует и вся энергия переходит в излучение, которое и создает тягу. Еще в XVIII в. было известно, что свет может оказывать давление на тела. Однако уровни тяги фотонных двигателей очень малы, и для создания тяги 0,9 кгс должна потребоваться мощность излучения 3 ГВт, равная мощности одной из крупнейших в настоящее время электростанций на Земле! При незначительном уменьшении к.п.д. такое устройство мгновенно испарится. Существует лишь один путь, приводящий к аннигиляции вещества,- соединение материи и антиматерии. Однако антиматерия, которая ведет себя точно так же, как и обычная материя, но электрические заряды всех заряженных частиц, входящих в ее атомы, имеют противоположные знаки, полностью отсутствует в обозримом пространстве Вселенной и должна производиться искусственно. В процессе производства антиматерии количество затрачиваемой энергии эквивалентно двойной массе вырабатываемой антиматерии, поэтому стоимость ее чрезвычайно высока. Необходимая для протекания этого процесса энергия будет, по-видимому, вырабатываться в обычных ядерных реакциях.

При работе с антиматерией главной проблемой может стать проблема ее хранения. Твердые стенки содержащих ее контейнеров в результате неконтролируемого процесса аннигиляции будут разрушаться. Запасти антиматерию можно либо в магнитном поле в виде высокотемпературной плазмы, либо в магнитном левитаторе в виде «антиметалла». В первом случае плотность вещества недопустимо мала, что приведет к созданию очень тяжелого космического аппарата, а во втором - ядерная техника производства, например антилития, слишком сложна для ее практического использования. Таким образом, хотя теоретически фотонная ракета могла бы иметь самые высокие двигательные характеристики, с современной инженерной точки зрения ее создание невозможно.

Существуют два других класса ускорительных систем, обладающих более высокими характеристиками по сравнению с лучшими современными двигателями. В обеих системах используется сильно разреженный газ, заполняющий межзвездное космическое пространство, так называемая межзвездная среда. В состав этого газа входят в основном водород и немного гелия; количество других элементов не превышает 1%. Простейший способ использования этого газа для создания тяги мог бы состоять в его «сгребании», засасывании и последующем выбрасывании из сопла, а требуемая для осуществления этого процесса энергия вырабатывалась бы за счет использования ядерного топлива, запасенного на борту корабля. Принцип работы такого устройства аналогичен принципу работы используемого в атмосфере Земли прямоточного воздушно-реактивного двигателя с химическими реакциями в газовой фазе. Однако в двигательной установке звездолета существенный вклад в тягу будут вносить выбрасываемые продукты ядерных реакций.

Эта система получила название «Межзвездная ракета с забором окружающей среды» - РАИР (англ. RAIR - Ram Augmented Interstellar Rocket). При полете такого аппарата требуется не столько засасывание окружающего разреженного газа, сколько определенным образом организованное взаимодействие с ним, например с помощью электрического или магнитного полей. В качестве реактора можно использовать пульсирующий ядерный двигатель с устройством (например, катушкой) для отбора части энергии на выходе двигателя и передачи ее окружающему пространству и наоборот. Вначале РАИР движется как обычная ракета до тех пор, пока не разовьет скорость, достаточную для взаимодействия с окружающей средой. На ранних стадиях полета отбираемая на выходе ракетного двигателя энергия будет передаваться внешнему потоку, замедляя скорость выброса струи, но вовлекая в движение большую массу внешнего потока. По достижении скорости, при которой эффективность работы рассмотренной системы начнет уменьшаться, режим работы такого своеобразного прямоточного реактивного двигателя с забором окружающей среды будет прекращен и возобновится движение аппарата как обычной ракеты. При еще больших скоростях вновь будет восстановлен режим прямоточного реактивного двигателя с забором окружающей среды, но теперь энергия будет отбираться из внешнего потока и передаваться реактивной струе. На этой стадии полета скорость корабля относительно окружающей межзвездной среды выше скорости истекающей из двигателя струи, причем увеличение скорости струи производится за счет использования внешней энергии. Перераспределяя таким образом между потоками энергию, вырабатываемую бортовым реактором, можно добиться весьма эффективного ее использования и достичь скорости, составляющей 50% скорости света. При реализации такого способа встретится масса трудностей, и одна из наиболее очевидных - взаимодействие двигателей установки с окружающей средой. Использование внешней среды должно быть достаточно эффективным, иначе не удастся достичь улучшения двигательных характеристик. Создание сильных магнитных полей также является сложной технической проблемой, которая далека еще от осуществления. Тем не менее такая двигательная установка, способная обеспечить высокие скорости движения, может быть создана в не столь отдаленном будущем.

Среди перспективных двигателей, способных обеспечить высокие скорости истечения, имеется еще один, наиболее мощный из всех изобретенных до сих пор,- межзвездный прямоточный реактивный двигатель (МПРД). Так же как и РАИР, МПРД будет захватывать разреженный газообразный водород, заполняющий межзвездное пространство, но теперь он будет поступать в следующую ступень. Вместо использования только в качестве ускоряемой массы (тяга создается за счет изменения момента количества движения) газообразный водород фактически будет служить также ядерным топливом в процессе превращения четырех атомов водорода в атом гелия. Поскольку в таком космическом корабле расходуемые двигательной установкой компоненты топлива черпаются из внешних источников, диапазон создаваемых при этом тяг и скоростей в принципе неограничен. Потенциальные возможности такой двигательной установки огромны, но бесконечными представляются и технические трудности, которые возникнут при ее создании.

Если такой звездолет удастся построить и он будет двигаться с ускорением, равным ускорению силы тяжести на Земле (1g), то он покроет расстояние в десять световых лет примерно за 12 лет по земным часам. Для членов экипажа пройдет всего лишь 5 лет. Экипаж сможет пересечь Галактику, поперечный размер которой составляет около 100 000 световых лет, за 31 год. По земным часам на это потребуется 100 000 лет, и потомки цивилизации, запустившей звездолет, могут затерять все следы этой экспедиции. Стартовая масса такого корабля будет около 100 000 т. Установленные на нем двигатели, аналогичные двигателям звездолета «Дедал», разгонят корабль до скорости, составляющей около 2% скорости света. На это потребуется около 45 000 т топлива. При такой скорости можно использовать МПРД.

В данном рассмотрении опущены некоторые технические вопросы. Например, диаметр «заборника» такого звездолета был бы равен половине диаметра Юпитера! Если топливо удерживать магнитным полем, то в настоящее время неизвестна конструкция катушки, способной выдержать возникающие нагрузки. Если в этой конструкции использовать даже какой-нибудь «удивительный» материал, то все равно «заборник» будет малоэффективным, поскольку из-за образования на входе в реактор воронки с газообразным водородом большая часть набегающего потока не попадет в двигатель. Это приведет к появлению заметной тормозящей силы, действующей на космический корабль. Если путем умелого использования электрического и магнитного полей удастся преодолеть это препятствие, то возникнет новая проблема, состоящая в том, что предложенная выше для получения энергии простая реакция ядерного синтеза протекает очень медленно и происходит лишь внутри некоторых звезд. Возможно использование так называемых каталитических реакций с промежуточными ядерными реакциями, в которых участвуют другие атомы, например углерод или азот. Окончательными продуктами таких реакций будут гелий, исходные атомы и, конечно, высвобождающаяся энергия. Известные в настоящее время реакции не удовлетворяют поставленным требованиям, но эта трудность со временем может быть преодолена

Мы рассмотрели только часть проблем. Сейчас они кажутся непреодолимыми, но, не имея возможности отступать, наверное, правильно будет продолжать исследования по созданию межзвездного ПРД, и если существует способ заставить его работать, то он несомненно будет найден. А как же быть с искривлением космического пространства и путешествиями по Галактике со скоростями, большими скорости света, бесчисленных героев научно-фантастических книг? Пока, к сожалению, это все лишь из области научной фантастики. Как нам сейчас представляется, таких путешественников не существует, но если физика добьется новых успехов, то не исключено, что хотя и в меньшем количестве, но подобные герои должны будут появиться.

Другие пути

Как упоминалось выше, альтернативное направление исследований основано на допущении, что межзвездное путешествие - дело отдаленного будущего. Может ли человек согласиться с этим? При таком подходе нам придется довольствоваться запуском корабля с вполне достижимой скоростью, составляющей, скажем, 0,01-0,1% скорости света, а сотни и тысячи лет полета использовать одним из следующих способов. Первый способ состоит в постройке таких гигантских кораблей, которые по праву можно считать отдельными мирами. Семьи людей, растения, животные, фактически целая цивилизация будут путешествовать в них. Каких же размеров должны быть такие корабли? Оценки расходятся, но их масса будет не менее сотен или даже тысяч миллионов тонн! Идея строительства новых миров в космосе была высказана К. Э. Циолковским в 20-х годах нашего столетия, но недавно она вновь была возрождена в виде предложенных О'Нейлом конструкций так называемых космических поселений (ст. 19), которые в один прекрасный день могут появиться вокруг Солнечной системы. Возможно, что из таких поселений вырастут космические корабли, вмещающие целые миры. Один такой корабль способен вместить миллионы обитателей, а в полете к звездам могут участвовать десятки таких кораблей. Поскольку за время перелета сменится не одно поколение живущих в корабле людей, то к далеким звездам доберутся лишь потомки тех, кто отправился в путь. Между отдельными регионами этой межзвездной цивилизации будут осуществляться регулярные полеты космического челнока, и эта ситуация, за исключением отсутствия Солнца, мало чем будет отличаться от нашей современной жизни на «космическом корабле» Земля. Конечно, такое рискованное предприятие, по нынешним понятиям, было бы невероятно дорого, а обоснование целесообразности путешествия и осуществление политического взаимодействия, необходимых для проведения таких экспедиций, будет весьма трудным делом.

Согласно второму способу, в межзвездную экспедицию отправляется не сообщество активно функционирующих людей, а людей в состоянии гибернации (типа зимней спячки у животных). При приближении звездолета к цели путешествия люди пробуждаются. Основная проблема состоит здесь в том, что никому еще не удавалось погрузить человека в состояние, близкое к гибернации. Не исключено, что такое погружение вообще невозможно. Было опробовано воздействие лекарств и низких температур, и оказалось принципиально возможным замедление функций человеческого организма в течение периодов времени, достаточных для проведения, например, некоторых медицинских операций. Однако уровень остаточной активности организма будет все же достаточно высоким, чтобы последний смог вынести межзвездное путешествие длительностью в несколько веков. Если бы удалось достичь состояния гибернации у людей, то можно было бы использовать космические корабли меньших размеров с сотнями людей на борту. Управление такими кораблями до момента пробуждения людей будут осуществлять автоматические устройства. Запрограммированное пробуждение людей позволило бы уменьшить массу корабля и за счет использования в качестве дома для «груза» звезды-цели, которую пробудившиеся путешественники смогут сделать обитаемой.

Третий способ основан на идее перевозки необходимых компонентов для контролируемого рождения людей в будущем. Предполагается отправить в полет не живых людей, а половые клетки, яйцеклетки и сперму, в инкубаторе, который фактически стал бы гигантской маткой, снабженной всеми необходимыми биохимическими веществами, запасенными в специальных баках. За зарождением, ростом, формированием и воспитанием человеческих личностей будут следить опытные роботы-няни, запрограммированные таким образом, чтобы вырастить людей, приспособленных к встрече с другим миром и способных жить в этих новых условиях. Эту идею, конечно, очень трудно осуществить, но все же несколько проще, чем предыдущую. Преимущество данного способа - возможность использования небольших космических кораблей меньшей стоимости.

Заслуживает упоминания еще одно предложение, касающееся проникновения человечества в межзвездное пространство. Оно, правда, не подходит под категорию пилотируемого космического полета, поскольку не предполагается запуска в космос ни человека, ни производимого им. Это так называемая целенаправленная «панспермия». В соответствии с этой концепцией к звездам будет отправлен небольшой корабль, загруженный специально приготовленными микроорганизмами. Когда корабль достигнет подходящей планеты, микроорганизмы будут выгружены из корабля, и начнется их рост и развитие. Предполагается, что через миллиарды лет эти организмы разовьются в разумные существа, и таким образом земная жизнь будет распространяться по всей нашей Галактике. Этот способ можно рассматривать как вариант предыдущего предложения. С точки зрения затраты усилий, возможно, что это самый дешевый путь распространения жизни в Галактике, но ясно, что он мало связан с пилотируемыми полетами к звездам.

Быть или не быть?

При проведении дискуссий о межзвездном полете как само собой разумеющееся предполагалось, что есть куда лететь и зачем лететь. Что касается первого утверждения, то, согласно теоретическим оценкам, основанным на рассмотрении звезд, подобных Солнцу, и теориям зарождения планет, в Галактике имеется около десяти миллионов планет, которые могут быть похожи на Землю. Если также предположить, что возникновение жизни не связано с «магической» спецификой Земли, то можно ожидать, что в некоторых из этих миров начнутся биохимические процессы. Неизвестно, насколько далеко продвинулся этот процесс к настоящему времени. Диапазон теорий широк - от утверждающих, что некоторые планеты населены похожими на нас живыми существами, до относящих человечество к уникальному явлению в Галактике. Убедительный аргумент в поддержку последней точки зрения состоит в том, что если существуют другие разумные существа, то к настоящему времени - допуская разброс в степени эволюции - мы должны были бы увидеть их космические корабли. Не считая НЛО (неопознанные летающие объекты) заслуживающими доверия доказательствами межзвездного полета, даже с учетом трудности такого полета следует признать, что никаких контактов со «звездными» представителями не было.

Итак, почему человечество должно отправиться к звездам? Очень трудно представить себе, какую пользу получит Солнечная система от такого рискованного предприятия. Ни один корабль не сможет вернуться, пока не пройдут столетия с момента его запуска, и за это время мир неузнаваемо изменится. Вряд ли можно таким путем решить проблему избыточного населения на нашей планете, так как ни одно разумное число звездолетов не сможет высвободить то жизненное пространство, которое мы заполняем при современных темпах прироста населения. Эту проблему можно решить только путем контроля за приростом.

Итак, мы приходим к выводу, что если межзвездный полет вообще когда-нибудь состоится, то это будет продиктовано не экономическими соображениями. Полет будет предпринят только лишь ради стремления распространить человеческую культуру во Вселенной. Проведение такого грандиозного мероприятия с этой целью сегодня невозможно, хотя многие ученые и философы мечтают о его осуществлении. Возможно, когда человечество будет иметь необходимые ресурсы, оно и не утратит подобных устремлений. Очевидно, принятие решения отправиться к звездам потребует от человечества глубокого анализа мотивов такого путешествия, цели жизни и наших взаимоотношений со Вселенной. Как будут решены все эти вопросы, сейчас трудно себе представить, но, возможно, основную сложность представят не технические проблемы осуществления полета к звездам, а проблемы согласования, координации работ и финансирования такого грандиозного мероприятия.

 

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: